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ABSTRACT 

The need for improved mathematics education in many of America’s schools that 

serve students from low income households has been extensively documented.  This 

practical action research study, set in a suburban Title I school with a primarily Hispanic, 

non-native English speaking population, is designed to explore the effects of the 

progression through a set of problem solving solution strategies on the mathematics 

problem solving abilities of 2nd grade students.  Students worked in class with partners to 

complete a Cognitively Guided Instruction-style (CGI) mathematics word problem using 

a dictated solution strategy five days a week for twelve weeks, three or four weeks for 

each of four solution strategies.  The phases included acting out the problem using realia, 

representing the problem using standard mathematics manipulatives, modeling the 

problem using a schematic representation, and solving the problem using a number 

sentence.  Data were collected using a five question problem solving pre- and post-

assessment, video recorded observations, and Daily Answer Recording Slips or 

Mathematics Problem Solving Journals.  Findings showed that this problem solving 

innovation was effective in increasing the problem solving abilities of all participants in 

this study, with an average increase of 63% in the number of pre-assessment to post-

assessment questions answered correctly.  Additionally, students increased the 

complexity of solutions used to solve problems and decreased the rate of guessing at 

answers to word problems.  Further rounds of research looking into the direct effects of 

the MKO are suggested as next steps of research. 

 Key words:  mathematics, problem solving, Cognitively Guided Instruction, 

realia, acting out, Vygotsky, constructivism, 2nd grade
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CHAPTER 1 

INTRODUCTION 

Many believe education in the United States is in peril.  The National 

Commission on Excellence in Education reported in 1983 that many minority and low 

socio-economic students were not learning at the same level as their more economically 

advantaged age-mates.  This inequality in education has continued.  American school 

children scored below the Organization for Economic Cooperation and Development 

average and ranked 35th out of 40 nations on the 2006 Program in International Student 

Assessment (PISA) of mathematics literacy, with America’s Black and Hispanic students 

scoring well below our White and Asian students (Organization for Economic 

Cooperation and Development, 2008).  The PISA assessment should not be considered an 

assessment of what each student has learned in just that school year, but, rather, it is an 

assessment of what the child has learned from birth (Berliner, 2011).  The United States 

educational system’s two main objectives are to develop each child’s academic skills and 

to lower the achievement gap between races, genders, and socioeconomic groups 

(Konstantopoulos & Chung, 2011).  Educationally disadvantaged children need to be 

given equal educational opportunities at school, including opportunities to learn how to 

solve problems through reasoning, evaluate decisions for soundness, persevere through 

difficulty, and communicate decisions with other people (Kilpatrick & Swafford, 2002; 

Lester Jr. & Charles, 2003; National Council of Teachers of Mathematics [NCTM], 2000, 

2004; Sutton & Krueger, 2002).  At home, parents are the proprietors of these 

experiences, guiding and providing a safe place for children to develop problem-solving 



 

 
 

2

skills.  At school, teachers, through careful preparation, provide these growth-promoting 

experiences for children. 

 Mathematics class can offer an opportunity for children to explore problem 

solving in a non-threatening environment.  When students are given opportunities to 

work through teacher selected problems in a community situation in which teachers 

facilitate, rather than take over the problem solving process, students are guided to 

understanding (Sutton & Krueger, 2002).  This pedagogical approach relies on 

discovering and building mathematical relationships and helps students create 

mathematics understanding and knowledge (Carpenter, Fennema, Franke, Levi, & 

Empson, 1999).  Accepting that students can create their own understanding of 

mathematics, rather than it being taught to the student, allows connections to be made 

between what the student already knows and new mathematical concepts (National 

Research Council, 1989; Sutton & Krueger, 2002).  A more knowledgeable other (MKO) 

in the classroom, such as a teacher or more advanced classmate who guides but does not 

tell, can serve as a scaffold, aiding the student to solve more complex problems than the 

student would have the cognitive ability to do independently (Vygotsky, 1978).  When 

children are given the opportunity, through a teacher’s careful allotment of time and 

problem selection, to construct new meanings from their past and current experiences, 

new understandings are formed (Brooks & Brooks, 1994; Dewey, 2002). 

 Problem solving is natural to young children because it is how they explore the 

world and develop new understandings.  Teachers can use this natural inquisitiveness to 

foster students’ learning in mathematics (NCTM, 2000).  Problem solving typically 

develops through a set of incremental steps at the child’s own developmental pace.  



 

 
 

3

Initially, students solve word problems by representing each part of the problem using 

concrete objects, move on to using more sophisticated counting strategies that model the 

actions of the problem with concrete objects, and finally develop the use of arithmetic 

strategies, such as using known facts or derived facts (Carpenter & Moser, 1984; Fuson, 

1988).  Students deepen their understanding of mathematical concepts when they are 

allowed to create their own representations of problems, rather than following the 

teacher’s mental representation of the problem (Schielack, Chancellor, & Childs, 2000). 

 Teachers can provide students with opportunities to reinforce their learning 

through verbalizing their reasoning and providing proof.  Giving students opportunities to 

present their information to classmates, the teacher, or other active participants allows 

students to think through their solutions and justify their work (Carpenter et al., 1999; 

Kilpatrick & Swafford, 2002; Kline, 2008).  Metacognition, making sense of one’s 

understanding, has been shown to be successful in building transferable knowledge in 

students (Palincsar & Brown, 1984; Scardamalia, Bereiter, & Steinback, 1984; 

Schoenfeld, 1983, 1985, 1991, as stated in Bransford, Brown, & Cocking, 1999) and 

develops in classrooms where students are allowed to be inquisitive, share their thinking, 

and take risks (NCTM, 2000).  Wu, An, King, Ramirez, and Evans (2009) found that by 

giving students the opportunity to share problems they have created and their solutions 

with the class, students’ confidence in their mathematical abilities increases.  In fact, 

further research has shown a significant positive relationship between attitude toward 

problem solving–confidence, patience, and willingness–and mathematics achievement 

(Mohd, Mahmood, & Ismail, 2011).  
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 National Council of Teachers of Mathematics (NCTM) (2000) proposes that 

students should have daily opportunities to describe, discuss, and defend their thinking in 

mathematics.  Discussing thinking gives students opportunities to develop appropriate 

mathematical vocabulary, deepen understanding of mathematical concepts, and think 

about alternate ways to solve problems (NCTM, 2000).  In a recent study, Hartweg and 

Heisler (2007) used student discussion to allow the teacher to understand student thinking 

and use redirecting questions to clear up misconceptions, as well as to allow other 

students to question the problem solving strategies of their classmates.  Their study found 

that even when students discovered another student’s error, respect was shown, and the 

class worked as a whole to create mathematical understanding from the misconception.  

Partner and small group discussions create the opportunity for students to learn 

questioning techniques, justify work, and clear up misconceptions in a respectful, 

comprehension building manner (NCTM, 2000).    

Evidence of the Problem 

Working as a second grade general education teacher at San Marcos Elementary 

for the past six years, I have found that the majority of the second grade students in my 

classroom show weak problem solving skills, both in mathematical contexts and in their 

everyday lives.  I see students confronted daily with problem situations, and oftentimes 

their choices of solutions are not in their best interest.  For example, in his or her reaction 

to a lost paper or a parent’s late arrival after school, a student could quickly become 

panicked, demonstrate illogical thought processes, or simply slip into physical or mental 

immobility.  Likewise, when confronted with an unfamiliar problem in mathematics class 

some students react similarly, by shutting down mentally and immediately asking me for 
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help or guessing at the answer.  Because problem solving is an integral part of the 

Arizona Second Grade Mathematics Standards, weak problem solving skills impact 

nearly all areas of mathematics.   

My second grade students show a general ability to solve basic word  

problems that require simple addition, but when problems require a procedure other than 

addition, have multiple steps, or contain irrelevant numbers or information, many 

students are unable to arrive at an accurate solution.  On the Spring 2009 TerraNova 

assessment, only 48% of the second graders in my class scored at high mastery on the 

questions that assessed mathematics problem solving and reasoning.  On the Spring 2010 

Stanford Achievement Test Series Tenth Edition (Stanford 10), my second grade students 

averaged a national percentile scale score of 50% on mathematics problem solving, and 

on the Spring 2011 Stanford 10, my students averaged a national percentile scale score of 

54%.  Given that the Spring 2009 TerraNova Assessment and Spring 2010 and 2011 

Stanford 10 assessment results and my own classroom observations indicate that a large 

percentage of the second graders I teach are unable to effectively solve mathematics 

problems using reasoning, increasing my students’ mathematics problem solving skills 

was the focus of my action research. 

Problem within the Local Context 

 Mathematics curriculum is dictated by the state but guided by the national 

standards.  In the mid-2000s, 44 states agreed to work together to create a standardized 

document that set forth the learning goals in kindergarten through twelfth grade 

mathematics and English language arts education (Dacey & Polly, 2012).  These 

standards, termed the Common Core State Standards, were designed to standardize 
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educational goals throughout the country so graduates of the American school system 

would be prepared for college, ready to enter the post-high school job market, and 

compete in a global economy (Common Core State Standards Initiative, 2010).  In 2010, 

the Arizona Department of Education (ADE) incorporated the Common Core State 

Standards into a new mathematics standards document for Arizona.  The 2010 Arizona 

Mathematics Standards are nearly identical to the Common Core State Standards with a 

small number of additional mathematics concepts to fit the state’s academic goals 

(Arizona Department of Education [ADE], 2011).  Beginning in the 2011-2012 school 

year, the Chandler Unified School District mandated these mathematics standards to be 

taught to kindergarten, first grade, second grade, and seventh grade students, with 

implementation in third grade, fourth grade, fifth grade, sixth grade, eighth grade, and 

high school taking place incrementally throughout the 2013-2014 school year.     

Chandler Unified School District has mapped out the teaching of the mathematics 

standards by quarter.  Individual teachers or teams of teachers at the same worksite are 

responsible for ensuring that the standards are taught to mastery level.  At my school the 

majority of the teachers plan their math instruction independently.  But at some grade 

levels teams of teachers work together to plan instruction or one teacher does all of the 

planning for the grade level team.  I am responsible for planning the second grade 

mathematics instruction with input from my team.  We meet regularly to talk about how 

we perceive the successfulness of the mathematics instruction and learning, to look at 

student mathematics work, and to plan our next instructional steps.  I research 

instructional techniques, materials, and resources and present them to my team.  The team 

discusses them and decides if we will incorporate them into our instruction.  If we agree, 
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then I write the lesson plans.  Our approach is collaborative and works well for ensuring 

adequate mathematics instruction is delivered to all San Marcos second graders.  But 

even with this collaborative approach, instruction has not been effective at helping 

students retain or apply what they are taught in regards to problem solving. 

 Skills needed for successful mathematics problem solving at school begin 

developing in the preschool years when young children are given opportunities to 

manipulate the base ten number system (Montague, n. d.).  The majority of San Marcos 

students come from disadvantaged homes–either financially, educationally, or both.  

Eighty-five percent of my students receive free or reduced price lunches and only 30% of 

my students have attended formal preschool.  Because of these disadvantages, providing 

an adequate, engaging, and equal mathematical learning experience in the early 

elementary years is vital to increasing their future academic success.  Payne (2005) 

describes two types of poverty, generational and situational.  “Generational poverty is 

defined as being in poverty for two generations or longer.  Situational poverty is a shorter 

time and is caused by circumstance (i.e., death, illness, divorce, etc.)” (Payne, 2005, p. 3).  

Situational poverty has always been an issue for the students attending San Marcos as 

many families have recently moved to government housing located near our school; but 

in the past three years, we have seen an influx of students coming from homes of 

generational poverty.  With this change, many students are coming to school with a new 

set of issues; more students are demonstrating off-task behavior in the classroom, which I 

believe is due to a lack of motivation to learn in the formal school setting and a lack of 

the home support which leads to a well rounded educational experience (Payne, 2005).  

In addition to the socioeconomic disadvantages San Marcos students face, nearly half of 



 

 
 

8

my second graders speak English as their second language, so receiving assistance with 

homework and class assignments printed solely in English is problematic.   

The accumulation of all of these factors has shown to be detrimental to San 

Marcos students.  The Spring 2011 administration of the Arizona Instrument to Measure 

Standards (AIMS) found that only 56% of third graders, 61% of fourth graders, 52% of 

fifth graders, and 27% of sixth graders scored in the “meets” or “exceeds” categories on 

the mathematics subtest.  This downward trajectory is confirmed in the finding that on 

the Spring 2010 AIMS mathematics subtest, 46% of fifth grade students met or exceeded 

the standard, but on the Spring 2011 assessment, for the same group of students then in 

the sixth grade, only 27% met the proficiency standard.      

Mathematics problem solving skills are vital to all members of society. 

Perseverance, critical thinking, reasoning, planning, and justifying thinking are all skills 

students develop through carefully crafted and guided mathematics problem solving 

experiences (NCTM, 2000).  To find success in careers as adults, students need to 

develop mathematical problem solving abilities in school (Kilpatrick & Swafford, 2002).  

In a recent newspaper interview, Jason Bagley, government affairs manager for Intel, the 

largest private employer in Chandler, stated that the main qualities his company looks for 

when hiring new employees is the ability to problem solve and be creative (“Intel Wants 

Cities”, 2010).  It is important to me, my school, and my district that we counter the trend 

of low achievement in mathematics problem solving with an increased focus on best 

practices in mathematics.  In addition to the much needed increase in AIMS test scores, 

we acknowledge the vast benefits of preparing our students for future endeavors, such as 

higher education, careers, and entrepreneurial experiences.  
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Previous interventions at the local level.  To assist teachers at College and 

Career Readiness schools (formerly called Title I), as well as teachers at higher socio-

economic schools, the Chandler Unified School District provides a variety of professional 

development supports for its teaching staff.  A wide array of mathematical concepts and 

methods are taught to teachers through professional development courses.  Additionally, 

the district has a Math Cadre, of which I am a member, that meets throughout the school 

year to create assessments, locate resources, design lessons that incorporate technology, 

and learn teaching methods and recent research results that can be shared with staff at 

their home schools.  Instructional Resource Center staff members, who are district 

personnel, serve as resources and evaluate teachers’ lessons, share strategies and teaching 

ideas, and act as coaches if requested.  Additionally, because San Marcos is a College and 

Career Readiness School, the school receives additional monies that we use to fund a 

curriculum specialist.  Our curriculum specialist is responsible for working alongside the 

principal in guiding and overseeing instruction, as well as presenting general teaching 

technique information and engaging the staff in professional development.  

During the 2010-2011 school year, I was the researcher-practitioner on an action 

research project that involved investigating the effects of having more knowledgeable 

peers describe their solution strategies to Cognitively Guided Instruction-style (CGI) 

multiplication word problems to the class.  The goal of this study was to increase 

students’ problem solving abilities and solution strategy complexity.  Results showed that 

students used a variety of strategies, such as direct modeling and derived facts, and the 

effect of the more knowledgeable peer sharing solution strategies was dependent on the 
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type of multiplication word problem.  In some cases the more knowledgeable peer had a 

positive influence on solution strategy complexity and in other cases it did not. 

An additional major support that Chandler Unified School District began 

providing to select schools during the 2010-2011 school year was the involvement in a 

school improvement process called Data Wise.  Data Wise is a cyclical process of 

examining testing data and classroom observation data to find a learner centered problem 

and a problem of practice that the school is facing.  This research based process was 

created by the Harvard Graduate School of Education with research done in Boston 

Public Schools (Boudett, City, & Murnane, 2005).  San Marcos was one of ten schools in 

the Chandler Unified School District that was selected to participate in this process.  San 

Marcos found that mathematics problem solving was an area of weakness for its students.  

The committee contended that this was caused by the lack of mathematics problem 

solving experiences in which teachers engaged their students.  Because of this, the Data 

Wise leadership team, of which I am the head, worked alongside San Marcos teaching 

staff to select the use of schematic representations as a school-wide focused teaching 

strategy that would help students improve their mathematics problem solving skills.   

A schematic representation is a student created drawn or written depiction of a 

word problem that aids in the successful completion of the problem.  Schematic 

representations vary from student to student, and can take the form of graphs, drawings of 

manipulatives, labeled sketches, or tables, among other things (Montague, n. d.).  A 

schematic representation differs from a pictorial representation in that a schematic 

representation includes mathematically significant drawings and representations of the 

parts of the problem.  For example, a schematic representation would show the spatial 
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relationships among objects in the problem, could include numbers and labels integral to 

solving the problem, and aids in the solution of the problem.  A pictorial representation 

would focus on the drawing of items in a problem, would not include accurate 

information that aids in finding the solution to the problem, and may contain extraneous 

drawings (Edens & Potter, 2008; van Garderen & Montague, 2003).    

San Marcos teachers chose to focus on schematic representations because of 

favorable research about the problem solving strategy.  NCTM (2000) states that students 

should be given multiple opportunities to produce schematic representations for problems 

to aid in the problem solving process.  Others have found that problem solving ability 

increases as students visualize and then create a written schematic representation of the 

problem, whereas drawing a pictorial representation decreases problem solving 

correctness (Edens & Potter, 2008; Hegarty & Kozhevnikov, 1999; Van Essen & 

Hamaker, 1990; van Garderen & Montague, 2003).  Foster (2007) found that her class of 

fourth grade students had a better understanding of the information provided by the 

problem and what the mathematics word problem was asking when her students created a 

schematic representation as part of their solution strategy.  Little opposition has been 

shown toward the use of schematic representations at the elementary level.  One hazard 

that Hegarty, Mayer, and Monk (1995) found was that students struggled more with 

making a useful written problem representation than actually computing the answer, 

which may have been due to students focusing on key words or dwelling on the pictures 

they were drawing rather than the mathematics behind the written representation 

(Presmeg, 1986).  San Marcos teachers were aware of this hazard and took steps to 

counter it from the onset of implementation of the strategy.   
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To alter teachers’ current mathematics instruction habits, teachers were directed 

to teach mathematics through problem solving a minimum of two times per week, give 

bi-weekly formative assessments and report students’ scores to the Data Wise team, and 

create and administer quarterly summative problem solving assessments and report 

students’ scores.  School-wide improvement goals were set, with two main targets.  First, 

grade levels aimed to increase the percent of students who scored proficient on quarterly 

problem solving assessments by 5% each quarter and to increase the total mathematics 

problem solving scores on the Spring 2011 AIMS assessment by 5%.  At the end of the 

2010-2011 school year, every grade level in the school surpassed their quarterly 

assessment goal.  Results were not so overwhelmingly favorable for the AIMS 

assessment though.  Third and fourth grade students narrowly met their AIMS problem 

solving goal, but fifth and sixth grade students fell short.  Though the Data Wise process 

brought unity in instruction to the school and an increased awareness of the benefits of 

teaching mathematics through problem solving, it did not lead to the positive gains in 

AIMS mathematics test scores that it set out for.  All of this led me to some essential 

questions.  Why were these stagnant test scores continuing to occur?  What happens if 

students lack the background experiences and knowledge needed for mental imagery to 

create schematic representations of problem situations?    

 Many different attempts to remedy the problem of low achievement in 

mathematics problem solving have been made, and even with all of the resources and 

interventions San Marcos Elementary and the Chandler Unified School District had in 

place, my second graders were still struggling to solve complex beginning second grade 

level word problems.  To address this issue, in this study I investigated: 
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1.)  How does a class of second grade students at San Marcos Elementary solve 

Cognitively Guided Instruction-style contextual word problems?  

2.)  How and to what extent does partnered Cognitively Guided Instruction-style 

mathematics word problem solving through guided incremental steps affect a class of San 

Marcos second graders’ mathematics problem solving abilities?  
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CHAPTER 2 

REVIEW OF SUPPORTING SCHOLARSHIP 

Historical Views of Problem Solving Instruction  

Problem solving in elementary grades mathematics is defined primarily as 

drawing on knowledge, skills, and experiences to engage in a task for which the solution 

method is unknown (NCTM, 2000).  Throughout most of the nineteenth and early 

twentieth centuries, the traditional educational view of problem solving was for a teacher 

to teach a mathematical concept or algorithm to the class through direction transmission, 

give the students multiple rote exercises to complete to practice the skill, and then, if time 

permitted, assign word problems that required students to apply the algorithm 

(D’Ambrosio, 2003; Mickelson & Ju, 2011).  This format of simply applying a known 

algorithm to a problem in context does not fit NCTM’s current day definition of problem 

solving.  Authentic problem solving requires that the solution be unknown and the 

student must do more than simply insert numbers from the problem in a given algorithm 

(NCTM, 2009).  This traditional format of textbook problem solving instruction has been 

found to be unsuccessful in improving the learning of students at risk of mathematical 

difficulties (Jitendra et al., 2007). 

In kindergarten through second grade, mathematics problem solving has 

historically been in the context of the arithmetic operations with whole numbers: join 

(addition), separate (subtraction), part-part-whole (addition and subtraction), compare 

(subtraction), grouping (multiplication), and portioning (division) problems.  More 

recently it has begun to encompass all subsets of mathematics education, including 
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problems that involve more than just addition, subtraction, multiplication, or division, 

such as fractional equivalencies and geometric properties (Carpenter et al., 1999).  

 Pólya’s (1957) problem solving hierarchy has formed the basis for much of the 

classical teaching of mathematics problem solving.  Pólya describes the process as 

understanding the problem, devising a plan, carrying out the plan, and reviewing 

solutions.  Strategies for solving problems suggested by Pólya are vast, including guess 

and check, solve a simpler problem, act it out, draw a picture or diagram, work 

backwards, and look for a pattern (Pólya, 1957). 

 Problem solving as a way to teach mathematical concepts began in the late 1970s 

and has gathered strength since then (Schoenfeld, 1992), but this trend has not been 

without its critics.  Stacey (2005) argues that teaching mathematics through problem 

solving is not a best practice.  Problem solving should be seen as the goal of mathematics, 

rather than the method.  Avital and Barbeau (1991) posit that students may come to 

wrong conjectures and conclusions if they are encouraged to solve problems based solely 

on intuition.  Indeed, a balance between intuition, reasoning, teacher guidance, and 

formal instruction need to be present at various times when children are working to 

develop their understanding in a mathematics classroom.  Throughout this time the 

NCTM has held firm to its belief that problem solving is a key component of, and the 

primary reason for, learning mathematics.  NCTM explains that learning to solve 

problems is the major goal of mathematics instruction in its three foundational 

publications, Agenda for Action (NCTM, 1980), Curriculum and Evaluation Standards 

for School Mathematics (NCTM, 1989), and Principles and Standards for School 

Mathematics (NCTM, 2000).   
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 Most recently, the Standards for Mathematical Practice have been introduced to 

facilitate the proper implementation of the problem solving standards contained in the 

Common Core State Standards into the mathematics classroom (Common Core State 

Standards Initiative, 2010).  These standards align with NCTM’s Process Standards, 

which have guided mathematics instruction in the past.  Standards for Mathematical 

Practice, as they relate to problem solving at the second grade level include having 

students: persevere to solve problems; reason in their head abstractly; share and discuss 

strategies; represent and model problems; use tools, pictures, drawings, manipulatives, 

and objects appropriately to aid in problem solving; check if solutions make sense and are 

correct; use prior mathematics knowledge in novel situations; and look for similarity 

among problems to assist in solving current problems.  These Standards for Mathematical 

Practice were designed to help students focus on the process of solving problems, and 

improve their holistic problem solving skills, rather than just focusing on coming to a 

correct solution rapidly and possibly without understanding (White & Dauksas, 2012). 

The Effect of Poverty on Problem Solving 

Among the world’s wealthy nations, the greatest disparity between the rich and 

the poor occurs in the United States (Wilkinson & Pickett, 2009).  In recent years, there 

has been an increase in the percentage of U.S. schools with 75% or more of their 

population receiving free or reduced price lunches, which is commonly accepted as an 

indication of socioeconomic status of a neighborhood (Lee, Grigg, & Dion, 2007).  

During the 1999-2000 school year, 12% of U.S. schools fit into this category of high 

percentage of free or reduced price lunches, but in the 2007-2008 school year, the amount 

had jumped to 17% (Aud et al., 2010).  Gonzales et al. (2008) found that when a school 
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had more than 75% of its students in poverty, the mathematics score on the 2007 Trends 

in International Mathematics and Science Study was a whole standard deviation lower 

than highly affluent schools.  From these testing results it is easy to see that poverty and 

opportunities provided by wealth greatly influence test scores and student achievement 

(Berliner, 2011).   

Students from lower socioeconomic backgrounds generally enter school with less 

language exposure, limited vocabulary range, and less background knowledge, which 

may be due to less exposure to printed text in the preschool years (Coley, 2002; Ramey & 

Ramey, 1994; Raver & Knitzer, 2002; Senechal & Cornell, 1993).  Research has shown 

that children from very low socioeconomic status homes were read to on a daily basis 

much less frequently than children from very high socioeconomic status homes, 34% as 

compared to 63% (Coley, 2002).  This limited language experience typically relates to 

lower problem solving abilities (Coley, 2002; Guerra & Schutz, 2001).  Socioeconomic 

status is also directly related to approaches to learning, with higher levels of 

socioeconomic status relating to higher engagement, persistence, and on-task behavior 

(Yair, 2000; Marks, 2000).  Cognitive development occurs faster in students who are 

actively engaged in their learning; therefore, mentally active children have faster 

cognitive development than passive children (Kamii & Rummelsburg, 2008).  This 

coincides with the notion that greater levels of participation, attention, and task 

persistence are correlated with higher standardized test scores and higher performance 

ratings from teachers (Alexander, Entwisle, & Dauber, 1993; Duncan et al., 2007; Finn, 

Pannozzo, & Voelkl, 1995; Horn & Packard, 1985; McClelland, Morrison, & Holmes, 

2000; Schaefer & McDermott, 1999; Tramontana, Hooper, & Selzer, 1988; Yen, Konold, 
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& McDermott, 2004).  Bodovski and Youn (2011) found that higher ratings of students’ 

approaches to learning–persistence, on task behavior, engagement–in first grade were 

substantially related to higher reading and mathematics achievement of these students 

when they were in fifth grade. 

A teacher can help a child develop the background knowledge needed to solve 

mathematics word problems by teaching vocabulary and providing experiences to which 

the child can relate future knowledge (Kovarik, 2010).  Because students enter school 

with extremely varied background experiences and skills, the best curricular decision a 

teacher can make is the developmentally appropriate decision for each child.  Providing 

engaging and interesting experiences daily that individualize the learning process for 

each student is imperative for school success (Ramey & Ramey, 1994).  Poor minority 

students are generally not afforded this luxury.  Their mathematics instruction typically 

focuses on memorizing facts and information and test taking tips, which increases even 

more as the schools these students are enrolled in do not make adequate yearly progress.  

Students are less likely to be given the opportunity to problem solve in mathematics, 

develop their critical thinking skills, or write creatively (Berliner, 2011).  Because 

socioeconomically disadvantaged and minority students are not given opportunities to 

problem solve or use logic to reason through problems, their skills will generally not 

increase.   

Theoretical Views Influencing Problem Solving Instruction 

A theoretical approach that combines Vygotsky’s social development theory, 

Bandura’s social learning theory, and Piaget’s and Vygotsky’s theories of constructivism 

address the necessary attributes for a successful primary mathematics classroom.  A 
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primary component of social development theory is the zone of proximal development, 

which is “the distance between the actual developmental level as determined by 

independent problem solving and the level of potential development as determined 

through problem solving under adult guidance or in collaboration with more capable 

peers” (Vygotsky, 1978, p. 86).  By interacting with a more capable peer or a teacher, 

commonly known as the MKO (more knowledgeable other), students’ cognitive abilities 

can be developed to the point where a task that had been too difficult to complete without 

support, can now be accomplished independently (Vygotsky, 1978).  Cloutier and 

Goldschmid (1978) found that elementary students who were given the opportunity to 

talk about their mathematics solution strategy with a classmate showed considerable 

ability improvements, but peers who completed the same tasks without being allowed to 

discuss their work with a partner did not improve their skills at all. 

Social learning theory purports that children in classroom situations learn from 

each other through observing each other’s action, observing the outcomes of that action, 

and deciding if the observer will replicate the action (Bandura, 1977).  In an elementary 

mathematics classroom, students are involved in the processes of these theories when 

learning mathematics problem solving.  Students working in small groups observe each 

other dissecting, understanding, computing, and reasoning through problem situations 

posed by the teacher.  When students are shown other ways to solve problems at a level 

just above where they are currently cognitively functioning, their mathematics abilities 

are developed (Carpenter et al., 1999).  Carefully constructed learning activities in the 

form of repeated, similar problems will allow the child to practice what he has observed 

and continue to develop and solidify his skills and understanding.  As explained by social 
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development theory and social learning theory, students learn from each other in a way 

that cannot be taught solely through direct transmission from a teacher.  These theories 

would support the idea that a good teacher can be defined as “one who gets students to 

explain things so well that they can be understood” (Reinhart, 2000, p. 478) rather than 

“one who explains things so well that students understand” (Reinhardt, 2000, p. 478).   

 Vygotsky’s (1978) idea that young children’s mathematical learnings begin 

before they attend formal schooling directly coincides with what Carpenter et al. (1999) 

use as the basis of their theory of Cognitively Guided Instruction.  A teacher can create a 

classroom environment that leads to social constructivism, the belief that students learn 

best in group settings and that relating school learning to real world situations will help 

students build their mathematical understandings (Vygotsky, 1978).  NCTM (2000) also 

suggests that in elementary mathematics classrooms, teachers should employ 

constructivist-style practices and tools to engage students in creating their own meaning 

based on their preexisting knowledge since the constructivist view coincides with how 

students’ brains learn mathematics (Zambo & Zambo, 2007).  Piaget (1953) and 

Vygotsky (1962) propose similar views of constructivism in the classroom.  Piaget’s 

cognitive constructivism, specifically logico-mathematical knowledge, suggests that 

ideas are constructed by individuals based on their interpretation of situations (Kamii & 

Rummelsburg, 2008; Kamii, 2012), whereas Vygotsky’s social constructivism proposes 

that ideas and understandings are created through interactions with peers and teachers.  

An effective mathematics classroom employs both practices at varying times, with the 

teacher facilitating learning experiences based on students’ current level of 

understanding.  Mathematical problems should be posed and discussions should take 
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place that help the child build on what the child already knows (Harel & Behr, 1991; 

National Research Council, 1989; Powell & Kalina, 2009; Romberg & Carpenter, 1986).  

Problems that are non-routine and cause disequilibrium require students to relate what 

they know, their schemata, to the problem presented to them.  Learning through problem 

solving helps students develop deep understanding of mathematical concepts by 

broadening the students’ prior knowledge through the induction of new understandings 

(Lambdin, 2003).  Staub & Stern (2002) found a positive correlation between the 

classroom achievement gains on word problems and teachers’ cognitive constructivist 

orientation in their longitudinal study of 496 German elementary students.  They also 

found no negative impact of teachers’ higher level of cognitive constructivist orientation 

and students’ arithmetic skills, defying what some believe is a drawback of the 

constructivist theory of mathematics education. 

Current Trends in Problem Solving Instruction 

As high-stakes testing and implementation of the Common Core State Standards 

have increased the demand for student problem solving abilities, teachers are feeling the 

strain on their class time.  Teachers are often directed to teach mathematics in a more 

conceptual or engaging way, but are rarely given meaningful suggestions on how to do 

that.  Daro, one of the primary authors of the Common Core State Standards, admits that 

the Standards do not dictate how the content should be taught (Daro, 2011).  Teachers are 

adapting well-known strategies and creating new strategies to meet the needs of students 

while meeting the teachers’ needs for increased student achievement without dramatically 

increasing teaching time.  For example, two recent studies, Wu et al. (2009) and Zollman 

(2009), have incorporated the use of graphic organizers to assist students with the 



 

 
 

22

comprehension, evaluation, and strategy of solving word problems.  Wu et al. (2009) 

found that using graphic organizers in conjunction with the mathematician’s chair, a 

protocol for sharing mathematics work and thought processes, increased a group of high 

performing second graders’ California Standards Test scores by 3.7%.  Zollman (2009) 

found an increase of 42% in the problem solving abilities of a group of third through fifth 

grade students on open-response mathematical problems after applying the graphic 

organizers innovation.   

 Recently, great emphasis has been placed on the classroom climate and culture.  

Research has shown that it is necessary for teachers to provide safe, rigorous, 

mathematically rich environments for students to develop their mathematics problem 

solving abilities (Sutton & Krueger, 2002).  Collaboration, discussion, and justification 

are keystones for an effective problem solving lesson.  Classrooms where children share 

their reasoning and engage in discussions better prepare students of all backgrounds for 

advanced mathematics (Chevalier, Pippen, & Stevens, 2008).  Additionally, students’ 

enthusiasm for mathematics increases when given the opportunity to work on problems in 

a fear-free and pleasurable environment.  Students feel more liberated to take risks and 

errors are not viewed as failures, but as opportunities for personal growth and learning 

(Femiano, 2003).   

In addition to climate and culture, the mathematical word problems that the 

teacher selects has gained recent focus and is now realized to have great importance to 

developing mathematical problem solving skills.  Because increased time is spent on 

problem solving, problems must be formulated that facilitate children learning 

mathematical concepts.  Problems that are open-ended (meaning that there are many 
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ways to access the solution), problems that are content developing, and work designed as 

an anticipatory set are beneficial to elementary students (Hartweg & Heisler, 2007).  

With proper problem selection, teachers can guide students toward the goals of 

developing a broad range of problem solving skills and strategies and monitoring and 

reflecting on their mathematical thinking and work (NCTM, 2000). 

Even with our advances in the understanding of mathematics teaching and 

learning, teachers are still faced with curriculum materials dictated by districts that do not 

align with research showing the need to create culture, foster student discourse and 

discussion, and build collegiality in the mathematics classroom.  Teachers have found 

that they must adapt their mandated curriculum to fit their students’ needs and their 

beliefs about teaching (Drake, Cirillo, & Herbel-Eisenmann, 2009).  Recent research has 

supported the use of Cognitively Guided Instruction (CGI) for guiding students in their 

mathematical development.  This has led to some schools and teachers adopting CGI in 

their math instruction. 

 CGI is a framework that was designed to assist elementary school educators, 

specifically those teaching kindergarten through third grade, to understand and help 

develop their students’ problem solving abilities.  A main tenant of CGI is that children 

enter school with innate abilities and knowledge about mathematics.  Children use these 

abilities to construct solutions to problems that many adults would consider far beyond a 

child’s mathematical abilities.  Through problem solving experiences using 

manipulatives, thinking about their own solutions, and learning other students’ solutions, 

children’s mathematical prowess develops through a series of steps, beginning with 
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modeling problems and ending with learning number facts to efficiently solve problems 

(Carpenter et al., 1999). 

CGI posits that there are 11 different types of addition and subtraction word 

problems and three multiplication and division word problem types, all dealing with 

single digit and multi-digit numbers (Carpenter et al., 1999).  Figure 1 shows the 11 

different addition and subtraction problem types with sample problems given as 

examples.  Since children bring a vast informal system of strategies to solve these 

problems with them when they come to school, it is the teacher’s duty to provide 

problems with which children can grapple, fostering children’s movement across the 

continuum of sophistication of solution methods (Wisconsin Center for Education 

Research, 2007).  Teachers facilitate the development of students’ understanding of 

mathematics by allowing them to use manipulatives, draw pictures, discuss their 

solutions, listen to other students discuss their problem solving strategies and solutions, 

and build connections among problems (Carpenter et al., 1999).  Because algorithms and 

computations are not the primary focus of CGI, students do not feel restricted in their 

problem solving strategies.  Students are encouraged to solve problems however they are 

able, and by watching and listening to other students solve the same problems, students’ 

solution strategies become more advanced, developing from direct models, to counting 

strategies, to derived number facts (Carpenter, Fennema, & Franke, 1996; Carpenter et 

al., 1999). 
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Join (Result Unknown) 
Connie had 5 
marbles.  Juan gave 
her 8 more marbles.  
How many marbles 
does Connie have 
altogether? 

(Change Unknown) 
Connie has 5 
marbles.  How 
many more marbles 
does she need to 
have 13 marbles 
altogether? 

(Start Unknown) 
Connie had some 
marbles.  Juan gave 
her five more 
marbles.  Now she 
has 13 marbles.  
How many marbles 
did Connie have to 
start with? 

Separate (Result Unknown) 
Connie had 13 
marbles.  She gave 5 
to Juan.  How many 
marbles does 
Connie have left? 

(Change Unknown) 
Connie had 13 
marbles.  She gave 
some to Juan.  Now 
she has 5 marbles 
left.  How many 
marbles did Connie 
give to Juan? 

(Start Unknown) 
Connie had some 
marbles.  She gave 5 
to Juan.  Now she 
has 8 marbles left.  
How many marbles 
did Connie have to 
start with? 

Part-Part-Whole (Whole Unknown) 
Connie has 5 red marbles and 8 
blue marbles.  How many 
marbles does she have? 

(Part Unknown) 
Connie has 13 marbles.  5 are 
red and the rest are blue.  How 
many blue marbles does Connie 
have? 

Compare (Difference 
Unknown) 
Connie has 13 
marbles.  Juan has 5 
marbles.  How 
many more marbles 
does Connie have 
than Juan? 

(Compare Quantity 
Unknown) 
Juan has 5 marbles.  
Connie has 8 more 
than Juan.  How 
many marbles does 
Connie have? 

(Referent Unknown) 
Connie has 13 
marbles.  She has 5 
more marbles than 
Juan.  How many 
marbles does Juan 
have? 

Figure 1.  CGI addition and subtraction problem types with examples.  Problem 
 
types assessed in this study are shaded in gray.  Reprinted from Children’s Mathematics:  
 
Cognitively Guided Instruction (p. 12), T. P. Carpenter, E. Fennema, M. L. Franke, L.  
 
Levi, & S. B. Empson, 1999, Portsmouth, NH: Heinemann.  Copyright 1999 by Thomas  
 
P. Carpenter, Elizabeth Fennema, Megan Loef Franke, Linda Levi, Susan B. Empson. 
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Problem solving solution strategies generally follow a hierarchy of complexity, 

with some solution strategies lending themselves better to certain problem types.  

Children generally begin solving problems by using tangible items, such as cubes or their 

fingers, to model the action or relationship stated in the problem.  This is referred to as 

Direct Modeling (Carpenter et al., 1999).  Jordan, Kaplan, Ramineni, and Locuniak 

(2008) found that students generally use their fingers to model number sentences when 

they are first learning number combinations, but tend to lessen the use of this strategy as 

their understandings of number relationships mature.  This generally happens sooner for 

higher socioeconomic students, usually by beginning of second grade; but for lower 

socioeconomic students the developmental process is slower (Jordan et al., 2008).  

Students then progress to using Counting strategies that show a child understands that it 

is not necessary to model and count each set in the problem.  Students employing a 

Counting solution strategy may still use manipulatives, but the manipulatives are now 

used to keep track of the numbers they are counting, not to represent individual numbers 

in the problem.  As the student’s understanding of the operations and the relationships 

between numbers increases, they begin to rely less on modeling and counting to find 

answers and begin to use Derived Facts and Recall of Number Facts.  A Derived Fact is a 

fact, not memorized, that students arrive at based on a memorized fact and their 

understanding of number and operation (Carpenter et al., 1999; Kling, 2011).  Figure 2 

illustrates the solution type complexity hierarchy for addition and subtraction problem 

types.  Children also tend to use certain solution strategy subtypes while they are in the 

Direct Modeling strategies and Counting strategies stages.   
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Complexity 
Level 
 

Solution 
Strategy 

Description Solution Strategy Subsets 

Level 1: 
Most basic 

Direct 
Modeling 

Using manipulatives 
(counters, unifix cubes, 
fingers, etc.) to model a 
problem and represent each 
number.  Then counting the 
manipulatives to find the 
answer. 
 

 Joining All 
 Joining To 
 Separating From 
 Separating To 
 Matching 
 Trial and Error 

Level 2:  
Intermediate 
complexity 

Counting  Counting on or counting 
back from a given number to 
find the solution. 

 Counting On From First 
 Counting On From Larger 
 Counting On To 
 Counting Down 
 Counting Down To 
  

Level 3:  
Most 
advanced 

Number 
Facts 

Using known addition or 
subtraction facts to solve 
problems or to aid in the 
solution of a problem 
containing a number set for 
which the solution is not 
memorized. 
 

 Derived Facts 
 Recalled Facts 

Figure 2.  Solution strategy complexity hierarchy.  Adapted from Children’s  
 
Mathematics: Cognitively Guided Instruction (p. 15 - 30), T. P. Carpenter, E. Fennema,  
 
M. L. Franke, L. Levi, & S. B. Empson, 1999, Portsmouth, NH: Heinemann.  Copyright  
 
1999 by Thomas P. Carpenter, Elizabeth Fennema, Megan Loef Franke, Linda Levi,  
 
Susan B. Empson. 

  

Coinciding with the problem solving strategy stages of CGI is the notion that 

problem solving skill develops through a concrete to pictorial to abstract format (Piaget, 

1953).  During the early 2000s, problem solving work based on this principle gained 

momentum with the increased interest of the Singapore model (Englard, 2010) and 

concrete-representational-abstract (CRA) (Flores, 2010).  The Singapore model of 
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problem solving poses that after students use real life objects to model the situation in a 

word problem, they are ready to draw a pictorial representation that shows the actions of 

the problem.  This helps students understand the relationship of the words of the problem 

and the mathematical operations involved in its solution.  In an experiment that compared 

a class of third grade students who received instruction using the Singapore model 

method to third, fourth, and fifth grade classes that did not receive the targeted 

instruction, the class of third graders who received instruction out performed all other 

classes on a test of word problem solving (Englard, 2010).  CRA has widely been used 

with students who are at risk of failure in mathematics, as well as students with learning 

disabilities in mathematics.  CRA’s teaching and learning process, that develops from 

concrete to representational to abstract, begins with the use of manipulatives.  The 

teacher models the proper use of manipulatives to solve word problems, and then guides 

the students in using the manipulatives to solve problems independently.  From there, 

manipulatives are replaced with pictures or drawn models representing the problem 

solving process.  Finally, students transition to the abstract phase, where they may use 

mnemonic strategies to help remember how to solve a problem fluently using numbers 

(Flores, 2010).  Sometimes, the concrete stage entails more than just the typical 

mathematics manipulatives of unifix cubes, color tiles, and base ten blocks.  Arzarello, 

Robutti, and Bazzini (2005) used artifacts, commonly called realia, and full body 

movements to model story problems through actions.  The effectiveness of this acting out 

strategy was tested through a teaching experiment with eleven- and twelve-year-olds.  

The basis of the experiment was that meaning can be constructed through one’s real 

experiences.  The study showed that students were actively engaged in creating a physical 
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model of the story problem and this fostered understanding when students moved on to 

the abstract phase (Arzarello et al., 2005).  Strand (1990) also found her students 

successful when she employed acting out story problems as the first strategy her students 

used when finding word problem solutions.  During this phase, Strand also wrote the 

equation that corresponded to the acted out model on the whiteboard to scaffold her 

students.  This acting out process was used to solve addition, subtraction, division, and 

multi-step word problems, and then students were transitioned to using manipulatives, 

such as base ten blocks (Strand, 1990).  Visually observing objects and graphically 

representing them, either schematically or numerically, are skills that positively impact 

students’ problem solving abilities (Cuoco & Curcio, 2001).   

By doing word problems with the whole body, connections are made between the 

movements needed to solve the mathematics word problem, visualization of the memory 

of the actions needed to solve the problem, and the cognitive processes used to solve the 

problem.  Mickelson and Ju (2011) used bodily movements termed math propulsions, the 

acting out of problems, and social interactions to increase the conceptual exploration and 

understanding of their secondary school mathematics students.  Through math 

propulsions, students had direct physical control over mathematics variables, used 

vocabulary and discussion to immediately act on a math problem, and saw math as an 

open ended inquiry rather than a domain regulated by lock-step routines to reach one 

correct solution (Mickelson & Ju, 2011).  

 When confronted with a mathematical translation of a real-world problem, 

primary aged students commonly arbitrarily or randomly combine the numbers in the 

word problem; this process of number grabbing is commonly due to difficulties 
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comprehending the text and how the situation fits into the mathematics problem solving 

realm (Peter-Koop, 2005).  Good teaching should build on students’ existing knowledge 

and understandings, which form the basis for new learning (Romberg & Carpenter, 

1986).  Solving problems logically and intuitively leads to a deep, rich understanding of 

mathematics that can be applied in novel situations (NCTM, 2000; Van de Walle, 2004), 

but the connection between the real world and the mathematical world does not happen 

intuitively for some students (Onslow, 1991).  Because many socioeconomically 

disadvantaged students lack background experiences to immediately “see” the steps 

needed to solve a word problem, teachers have guided students to problem solving 

success by starting at the visualization level.   

 Hegarty et al. (1995) found that effective problem solvers unpack the text of a 

problem by translating each sentence or action in the problem into a visual representation 

in a mental model of the problem, sometimes called seeing in the mind’s eye.  Using the 

mind’s eye, mentally recalling pictures of objects or events not currently visible with the 

eye (Block, 1981; Edens & Potter, 2008; Hibbing & Rankin-Erickson, 2003; Kosslyn, 

Pinker, Smith, & Shwartz, 1981; LeBoutilier & Marks, 2003; Paivio, 1971, 1983, 1986; 

Sadoski & Paivio, 2001), can aid in various types of problem solving, but most students 

must be taught how to create these mental images (Douville, 2004).  Visualizing using 

the mind’s eye has been shown to be beneficial in mathematics, science, architecture, 

engineering, and technology education (Kaufman, 2007).   

The Sensory Activation Model (SAM), a visualization technique, was used with 

second grade students in the contexts of reading and writing.  Over a six day period, 

teachers modeled how to create rich mental images that included all senses and then 
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allowed students to create their own SAM images.  This procedure led to increased 

description in written and oral responses than before the SAM procedure was employed.  

Students also carried SAM over to mathematics work (Douville & Boone, 2003).  SAM 

can be used as a bridge to lead students from the concrete world of the prior experiences 

they bring with them to the classroom to the abstract representations needed to efficiently 

and effectively solve mathematics word problems (Douville, 2004).  Douville (2004) 

suggests that pictorial image drawing must first be internally imagined before the student 

can draw it.  Teachers should be cautious as to not expect that students can intuitively use 

mental imagery.  Teachers may need to provide background knowledge and vocabulary 

that relates to mental images while modeling how to create images in the mind’s eye 

(Hibbing & Rankin-Erickson, 2003).  It is important for teachers to help young students 

make connections between their background knowledge and authentic mathematical tasks 

to help concretize the process (Carpenter et al., 1999; Douville, 2004; NCTM, 2000).  

Visual maturity is generally attained between ages 8 and 11, though many students do not 

automatically develop the ability to visualize a mathematics word problem.  These 

students will need instruction on how to visualize to represent problems (Montague,       

n. d.).  To help transition from the beginning stage of problem solving development to the 

representational stage, it may be necessary for teachers to model how this transition takes 

place.  The innovation that I implemented was designed to help build this bridge in a 

developmentally appropriate format.     
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CHAPTER 3 

RESEARCH DESIGN 

Mixed Methods Purpose and Design 

This study was designed to investigate how a class of second grade students 

solved mathematics word problems in order to increase students’ problem solving skills 

that may transfer to other academic subjects and domains in their lives.  The focus was to 

determine the effect of using a sequence of representations to solve word problems (the 

independent variable) on students’ scores on pre-/post-assessments and daily problem 

solving (dependent variables).  This practical action research study employed mixed 

methods to gain a deeper understanding of the findings than a qualitative or quantitative 

study could produce on their own.  The results of this study will be used to influence the 

day-to-day activities of my classroom (Caracelli & Greene, 1993; Creswell & Plano 

Clark, 2007; Greene, Caracelli, & Graham, 1989; Stringer, 2007; Tashakkori & Creswell, 

2007; Teddlie & Tashakkori, 2006; Woolley, 2009).   

This study employed a one-group pre-test-post-test design, that is a pre-test, then 

a treatment, followed by a post-test (Creswell, 2009).  Quantitative data included scores 

on pre-/post- problem solving assessments, analysis of solution strategies used on the  

pre-/post-assessment, answers to students’ daily problem solving tasks, length of time 

students solved daily word problems, and the number of words students spoke while 

solving daily problems.  Figure 3 shows the research design for the collection of          

pre-/post-assessment quantitative data in this study.   
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Group A   O1 ------------- X --------------O2 

Figure 3.  Implementation of the one-group pre-test-post-test design.  O1 indicates the 
 
pre-test phase, X indicates the implementation of the innovation, and O2 indicates the 
 
post-test phase.  Adapted from Research Design: Qualitative, Quantitative, and Mixed  
 
Methods Approaches (p. 160), by J. W. Creswell, 2009, New Delhi, India: Sage.   
 
Copyright 2009 by Sage Publications. 

 

Qualitative data analysis was based on grounded theory, which allowed the 

qualitative data to be used to emit complex understanding of the situated context 

(Creswell, 2009).  Qualitative data analysis took place over a series of steps throughout 

the study.  Data from daily video recorded observations and students’ explanations of 

their solution strategies on the pre-assessment and post-assessment were analyzed using 

the open coding, axial coding, and selective coding format (Corbin & Strauss, 2008). 

Throughout this study, quantitative and qualitative data were gathered 

concurrently using a component design (Greene, 2007).  Quantitative data and qualitative 

data remained identifiable throughout the data collection process, although because 

triangulation was employed, both quantitative and qualitative methods were necessary to 

create final assertions (Creswell, 2009; Greene, 2007).  Figure 4 shows the triangulation 

design used in this study.  Triangulation allowed multiple data sources–the correctness of 

student answers to daily contextual problems, written descriptions of students’ problem 

solving strategies on the pre-assessment and post-assessment, weekly video recorded 

observations of three dyads’ solution processes, and solution strategies and sub-strategies 

on the pre-assessment and the post-assessment–to be mixed at the analysis stage and to 
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weigh in on the findings of this study (Creswell, 2009; Greene, 2007).  Through 

triangulation, convergence, not divergence, was elicited.   

 
          QUAN                                            +                                         QUAL 
   Data Collection                                                                          Data Collection 
                
 
 
          QUAN                                                                                                                         .          QUAL 
    Data Analysis                     Data Results Compared                    Data Analysis 

Figure 4.  Concurrent triangulation design of this study.  Quantitative and  
 
qualitative data were collected concurrently and were brought together at the  
 
analysis phase.  Reprinted from Research Design: Qualitative, Quantitative, and  
 
Mixed Methods Approaches (p. 210), by J. W. Creswell, 2009, New Delhi, India:  
 
Sage.  Copyright 2009 by Sage Publications. 
 
 
Setting and Participants 

This study took place at San Marcos Elementary, a suburban College and Career 

Readiness school that services preschool through sixth grade students.  In the 2012-2013 

school year, San Marcos had a population of 635 students from six different racial and 

ethnic backgrounds (83% Hispanic, 6% White, 6% African American, 2% Native 

American, 2% Asian, and 1% other races).  Ninety-one percent of the students received 

free or reduced price lunches.  Each year, nearly two-thirds of our students enter 

kindergarten as English language learning (ELL) students.  Historically, our ELL 

reclassification rate has been approximately 40% each year.  This means that many 

students who participated in this study were classified as fluent English proficient (FEP).  

FEP students are students who have tested out of the English language development 
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program within the past two years, but are still developing their full English language 

skills (Liquanti, 1999).  San Marcos Elementary did not make Adequate Year Progress 

(AYP), as dictated by the No Child Left Behind Act of 2001, during the 2009-2010 or 

2010-2011 school year, but did make AYP during the 2011-2012 school year, and 

continues to undergo shifts in pedagogical practices. 

The participants in this study were my Fall 2012 second grade class of children.  

Nineteen students, ranging in age from 6 to 8 years old, participated in the entire 

innovation process.  Students were assigned to second grade classrooms using a stratified 

random distribution.  To place students in second grade classrooms, first grade teachers 

rated their students on academic ability and study skills.  They then divided students so 

that each second grade classroom had an equal number of academically advanced 

students, academically typical students, and academically delayed students.  This 

procedure was then crosschecked to ensure even distribution of students with strong 

study skills and weak study skills.  Therefore, my class was comprised of students at all 

levels of mathematics achievement.  This reduced the regression threat to internal validity 

(Smith & Glass, 1987).  All students present in my regular education mathematics 

classroom at the time of each lesson participated in that lesson.  Students in my 

homeroom who had an Individualized Education Plan (IEP) in the area of mathematics 

did not receive the treatment, and therefore were not included in the study.  Those 

students received accommodated or alternative curriculum in the special education 

resource classroom.  In this study, mortality–or participants leaving the study–was a 

limited threat to validity, with only three students who started the innovation changing 
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schools during the implementation period (Smith & Glass, 1987).  These students’ data 

were not included in the study.   

Innovation 

 This study used an adaptation to the traditional CGI format with students working 

in like-ability dyads to solve daily word problems and then sharing their solution 

strategies with the class.  Students were guided through a seven phase solution strategy 

plan that scaffolded their problem solving skills, in hopes of increasing their abilities and 

efficiency.  Guided problem solving began with using realia to act out the word problem.  

Students then moved on to using traditional mathematics manipulatives to model the 

problem.  In the next phase, students drew schematic representations to solve the 

problem.  Finally, students were guided to use number sentences to come to a solution.  

The innovation included a scaffolded hybrid period between each of these phases that 

was designed to assist students in their transition from one problem solving solution 

strategy to the next.    

 Justification for the innovation.  CGI was chosen because of its direct impact on 

the formation of the problem solving standards of the Common Core State Standards, 

which now guide my mathematics instruction (Dacey & Polly, 2012).  This daily problem 

solving format addressed all aspects of the Standards for Mathematical Practice as stated 

in the Common Core State Standards, the benchmark for problem solving in the 

mathematics classroom (White & Dauksas, 2012). 

 Pre-assessment.  Each student completed a five question problem solving pre-

assessment (Appendix A).  The teacher, myself, who was also the researcher, delivered 

this assessment orally one-on-one.  I sat in close proximity at a 90 degree angle to the 
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student, across the corner of a classroom table.  This position allowed me to see the 

student’s hand and head movements, hear the student even if the child was speaking in a 

whisper tone, and see the child’s manipulation of materials, all while being at a 

nonthreatening distance from the child.  The location of the teacher is important to this 

study because oftentimes students appear to be using one solution strategy, such as Direct 

Modeling, but are actually using a Counting strategy (Carpenter et al., 1999).  Being at a 

close proximity to the student gave me a better opportunity to observe the child’s exact 

problem solving strategy.  On the table there was realia (the actual object stated in the 

word problem), traditional mathematics manipulatives (base ten blocks and unifix cubes), 

paper, and a pencil.  The student was instructed to use as many or as few of these 

materials as desired to solve each problem.  Each student’s solution strategy and strategy 

subset for each problem was recorded on the Solution Strategy Recording Form 

(Appendix B).  If necessary, I asked the student to describe the solution strategy used to 

solve the problem.  The pre-assessment took between 9 and 15 minutes per child to 

conduct. 

 Placement of students into dyads.  Upon completion of the pre-assessment 

sessions, I analyzed the students’ solution strategies and solution strategy subsets, and 

placed students in like-ability partner groups.  During the entire innovation period, these 

like-ability dyads worked together to complete the daily CGI-style mathematics word 

problems.    

Justification for like-ability dyads.  The benefits of working in dyads are many, 

and Marzano (2007) recommends that students be placed in pairs or triads for cooperative 

group work.  Dyads allow discussion between students that can increase students’ 
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engagement and persistence when solving a problem, as well as help lower ability 

students understand the mathematical meaning of a problem, its vocabulary, and the 

appropriate mathematical response to the problem (NCTM, 2004).  In a study of fifth 

grade students solving an involved mathematics problem, students working in dyads 

explored multiple solution strategy paths and showed divergent reasoning that would 

likely not have been reached in individual problem solving (Vye, Goldman, Voss, Hmelo, 

& Williams, 1997).  Schmitz and Winskel (2008) found that upper elementary students 

working in closer related ability groups performed better than dyads that contained one 

high performing student and one low performing student, and Denessen, Veenman, 

Dobbelsteen, and Van Schilt (2008) discovered that when sixth grade students were 

placed in mixed ability dyads, the higher ability student performed better on the problem 

solving task and showed more cognitive elaborations than the lower ability partner.  

Similar findings on like-ability groups have been found at lower elementary grades, as 

well.  Takako (2010) suggests that when early elementary students at low socioeconomic 

schools participated in mixed ability groups, their scores in reading did not improve.  

Working in dyads also benefits at-risk students.  Students typically reluctant to share 

ideas with the class usually feel more comfortable sharing the answer or solution strategy 

of a partner or small group (Reinhart, 2000).   

Phases of the innovation.  This innovation has seven phases, each lasting from 

one to three weeks.  The seven phases progressed with increasing levels of mathematics 

complexity in their solution strategies: acting out the problem using realia, modeling the 

problem using traditional mathematics manipulatives, drawing a schematic representation 
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of the problem on paper, and finally using a number sentence to solve the problem.  

Figure 5 displays the phases of the innovation process. 

 
Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6 Phase 7 
2 weeks 1 week 2 weeks 1 week 2 weeks 1 week 3 weeks 

Acting the 
problem 
out using 
realia 

Hybrid 
of  
Phase 1 
and 
Phase 3 

Using 
traditional 
mathematics 
manipulatives 

Hybrid 
of 
Phase 3 
and 
Phase 5 

Drawing a 
schematic 
representation 
on paper 

Hybrid 
of 
Phase 5 
and 
Phase 7 

Writing a 
number 
sentence on 
paper 

Figure 5.  Diagram of innovation phases implementation. 
  

Justification for innovation phases.  Problem solving phases were sequenced in 

this order because many students benefit from seeing the transition from manipulatives to 

schematic representations to written symbolic notation of problem solving processes 

modeled by the teacher or other more knowledgeable others (Montague, n. d.).  

Additionally, teachers should provide learning experiences and classroom discussions 

that foster the growth of the understanding that mathematical symbolism represents real 

world experiences and vice versa.  Being a flexible problem solver, being able to use a 

variety of strategies to solve problems, saves time and effort.  It is when people can travel 

from the concrete to the abstract and from the abstract to the concrete that they become 

mathematically literate (Onslow, 1991).   

Phase 1, realia (2 weeks).  In Phase 1 of the innovation process, students solved 

problems by modeling the actions in the daily CGI-style word problem using realia.  

Examples of realia are the actual items, or cutout models of the actual items, that are a 

component of the word problem’s context.  For the problem “Robin had 8 toy cars.  Her 

parents gave her some more toy cars for her birthday.  Then she had 13 toy cars.  How 
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many toy cars did her parents give her?” (Carpenter et al., 1999, p. 21), students would be 

given toy cars to model the actions of the problem or students could use cutouts of toy 

cars to act out the problem and find the solution.  There was a risk during this phase that 

students might focus on playing with the realia rather than on the mathematics at hand.  

Luckily, Chevalier et al. (2008) found that even though they expected students to be more 

focused on mathematics realia (including play money, plastic cookies, rubber snakes, and 

cotton ball mice) than on the problem solving process itself, students ended up being 

focused on the mathematical concepts being taught.  This was also the case in this study. 

Justification for problem solving using realia.  The realia phase may be critical to 

the successful completion of word problems, since many students have troubles solving 

word problems because they do not know where to begin and because they may not make 

the connection that a more abstract model, for example a wooden block, can represent the 

problem at hand (Montague, n. d.).  The most common ways of teaching addition and 

subtraction word problems is through creating a number sentence and focusing on the 

solution strategy.  Instead, instruction should begin with representing the situation in the 

problem, which is especially true for more difficult problem types (Willis & Fuson, 

1988).  Nuthall (1999) found that visual instruction–helping students generate mental 

pictures–and dramatic instruction–dramatizing content–both enhance learning and lead to 

increased retention.  Nonlinguistic representations, in the form of mental images based on 

one’s experiences, can be effective ways to process information (Marzano, 2007).  In the 

case of this innovation, acting out the problem can lead to mental imagery that may be 

used as nonlinguistic representations on future problems.   
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Phase 2, connecting realia to traditional mathematics manipulatives (1 week).  

During this phase students used a hybrid solution strategy by modeling the problem’s 

actions using realia first, and then using traditional mathematics manipulatives, a more 

abstract model, to represent the problem.  Traditional mathematics manipulatives, such as 

base ten blocks, can be quite abstract and therefore should be used alongside the real 

world experiences they represent to build meaning behind the manipulatives (Onslow, 

1991).  

Phase 3, traditional mathematics manipulatives (2 weeks).  During Phase 3, 

students used traditional mathematics manipulatives (base ten blocks, unifix cubes, or 

counters) to model the daily word problem and find the answer.  These traditional 

manipulatives took the place of the realia used in the first phase of the innovation.  

Throughout this phase, implementation was focused on the idea that manipulatives do not 

guarantee engagement in the classroom.  It is what students do with the manipulatives 

that evoke learning and understanding (Onslow, 1991).   

Justification for problem solving using traditional mathematics manipulatives.  

This innovation was designed to scaffold students through the problem solving hierarchy 

to efficiency.  Phase 1 was designed to use total body acting out experiences using realia 

to help students develop their mental imagery skills.  As stated earlier, one of the most 

powerful problem representation strategies is visualization of the problem.  Visualization 

can be in the form of mental imagery, manipulatives, or paper and pencil representations 

(Montague, n.d.).  Phase 3 used traditional mathematics manipulatives to build on the 

previous phases, hence developing visualization of a posed mathematics problem.   
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Phase 4, connecting manipulatives to schematic representations (1 week).  In 

this hybrid phase of the innovation students first solved the problem using traditional 

mathematics manipulatives and then drew a schematic representation of the problem.  

Since students who have difficulties representing problems will likely have troubles 

solving them, teachers need to help students construct representations that make sense to 

them, as was done in this phase (Onslow, 1991).  Papert (1980) explains that anything 

can make sense to someone if they assimilate it into their mental models.  This 

assimilation can be supported through the use of schematic representations. 

 Phase 5, schematic representations (2 weeks).  During this phase students used 

paper and pencil to draw a schematic representation to solve the daily CGI-style word 

problem.   

 Justification for problem solving using schematic representations.  Schematic 

representations act as a scaffold between concrete manipulations of problem elements 

and their numerical representations (Willis & Fuson, 1988).  When students begin to 

visualize a problem through a schematic representation, students might need instruction 

on how to describe the actions and mathematical processes shown in the schematic 

representation at a mathematically symbolic level (Montague, n. d.).  Problem model 

approach, which is similar to the visualization progression of this innovation, is an 

effective way of translating the mathematical problem into a mental image and then a 

schematic representation to come to an accurate solution (Hegarty et al., 1995).  When 

students correctly create and label their schematic representations, they generally find the 

correct solution.  Schematic representations seem to provide an organization of the 
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problem elements and facilitate a correct mathematical process decision, which leads to 

an accurate solution (Willis & Fuson, 1988).   

 Phase 6, connecting schematic representations to writing number sentences (1 

week).  During this phase students used a hybrid solution strategy; they first solved the 

problem using a schematic representation on paper and then they wrote the number 

sentence that solved the problem.  This hybrid phase was important because it is 

imperative to link mathematical symbolism to real world experiences whenever possible 

so students develop understanding of mathematics problems and their abstract symbols 

(Onslow, 1991).  Care in instruction was taken during this phase because schematic 

drawings have been shown to be a successful solution strategy for second grade students 

when solving addition and subtraction word problems (Willis & Fuson, 1988), such as 

join and separate actions (Bebout, 1986), but students may struggle to write number 

sentences for problems whose semantic structure does not directly relate to the actions 

needed to solve the problem (DeCorte & Verschaffel, 1985). 

Phase 7, writing number sentences (3 weeks).  The final phase of the innovation 

lasted for three weeks.  Students only used a number sentence to solve the daily word 

problem.   

Justification for problem solving by writing number sentences.  Much of 

traditional mathematics instruction and assessment focus on symbolic notation, usually in 

the form of a number sentence.  Knowing what those numbers mean and represent in the 

real world requires mental constructions.  Being able to solve word problems efficiently 

and with understanding are primary functions of mathematics education (Onslow, 1991).  

This is important to current mathematics instruction because the Common Core State 
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Standards guide teachers to creating classrooms where symbolic and abstract 

mathematical representations are commonplace (Common Core State Standards 

Initiative, 2010; White & Dauksas, 2012). 

 Word problem selection.  Daily word problems used through this innovation 

period were selected from the 11 addition and subtraction problem types developed by 

Carpenter et al. (1999) and are displayed in Table 1.  This study was not an 

instructionally maximal treatment because it did not focus solely on the problem types 

with which students were having the most problems (Willis & Fuson, 1988).  All problem 

types were equally represented throughout the innovation with each problem type being 

practiced either five or six times by students.  To control for problem ordering effects, the 

daily word problems were arranged so that no two same problem types were taught on 

back-to-back days and problem types were mixed throughout the innovation phases so 

students would not get accustomed to a problem and merely apply a practiced algorithm 

to solve it.  Since CGI and NCTM posit that true problem solving is non-routine, this is 

an important aspect of this study (Carpenter et al., 1999; NCTM, 2000).  Appendix C and 

Appendix D show all of the daily problem solving questions.   

Problem solving procedure. This study took place over the course of 12 

instructional weeks, encompassing 60 daily math problem solving lessons each 

approximately 30 minutes in length.  Lessons began with a whole class reading of the 

day’s problem.  Students orally restated the problem and asked clarifying questions as 

needed.  Word problems in Phases 1, 2, and 3 were read to the class; students did not 

receive a written copy and word problems in Phases 4, 5, 6, and 7 were read to the class 

and available in each student’s Mathematics Problem Solving Journal (Appendix D).  
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Students were then briefly instructed on the solution strategy (acting out using realia, 

representing with manipulatives, creating a schematic representation, or writing a number 

sentence) they should use to solve the day’s problem.   

Partners worked together to solve each day’s word problem.  Student dyads 

spread out throughout the classroom, finding a working space.  This portion of the daily 

problem solving procedure was termed “students-at-work” (Kline, 2008, p.145).  

Students were given up to 10 minutes to work on solving the problem using that phase’s 

modeling strategy, though the time needed to solve each problem generally decreased 

over the innovation period.  After dyads agreed on the solution they recorded their 

answer on the Daily Answer Recording Slip (Phases 1, 2, and 3) (Appendix E) or the 

Mathematics Problem Solving Journal (Phases 4, 5, 6, and 7).  They used the remaining 

time in this 10 minute time period to rehearse how they would describe their solution 

strategy to the class if they were chosen to be that day’s presenters.   

When students were finished, they returned to their desks.  Selected dyads were 

then called on to share their solution strategies with the class during a class “strategy 

conference” (Peter-Koop, 2005, p. 8).  Strategy conferences allow students the 

opportunity to share their solution strategy, reflect on their work, and compare their 

strategy with others’ strategies (Peter-Koop, 2005).  Students were selected to present 

based on the manipulative they chose to use, how they modeled the problem, the 

schematic representation created, or the number sentence used to solve the problem.  The 

students sharing their solution strategies served as MKOs and showed how they used 

their realia, manipulative, schematic presentation, or number sentence to solve the 

problem, explained how they knew to do these things to solve the problem, and answered 
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questions their classmates posed.  Classmates then asked clarifying questions, made 

agree/disagree statements, probed for further understanding by asking “what if” 

questions, and compared their solution strategy with the MKOs’ solution strategy making 

themselves actively engaged in their learning of mathematics (Reinhart, 2000).  Seeing 

these new ways to solve problems allowed students to relate their solution strategy to 

classmates’ and find more efficient ways to solve problems (NCTM, 2000).  Because the 

strategy conference is an imperative step leading to student understanding, visualizing 

different strategies, making generalizations, identifying inconsistencies in a person’s 

reasoning, and verifying a student’s own solution strategy it was not rushed (NCTM, 

2004).  The sharing and discourse process lasted between 10 and 20 minutes.      

Justification for strategy conferences.  This strategy conference process was a 

critical part of the innovation because it was designed to benefit all members of the 

classroom.  It provided an opportunity to scaffold students with cognitively lower 

bottoms on their zone of proximal developments (ZPDs) (Vygotsky, 1978).  Heuser 

(2005) found that when students with lower level solution strategies, such as pictures, 

observed peers with higher level solution strategies, such as number sentences, the 

students who had previously used a lower complexity solution strategy began showing 

understanding of the higher level solution strategies and began experimenting with them.  

This discussion time also benefitted the MKOs because when students reflect on their 

strategies and share them verbally, students deepen, develop, and extend their 

understanding of mathematical concepts (Burns & Silbey, 2001; Carpenter, Fennema, & 

Franke, 1996; Kline, 2008) and build an understanding of flexible, successful ways to 

solve problems (NCTM, 2000).  By participating in strategy conferences, limited English 
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proficient students get experience verbalizing their thought processes, becoming more 

comfortable and confident with their overall English language skills and mathematics 

discourse (Hoffert, 2009).  Inter-peer conversations also give teachers a direct look at 

student thinking, reasoning, and logic (NCTM, 2004) and help the teacher design the next 

teaching steps (Drake et al., 2009; Kline, 2008).   

Post-assessment.  After all 12 weeks of the innovation period, each student was 

individually post-assessed using the pre-/post-assessment five question test.  An identical 

testing format to the pre-assessment took place.  Solutions were again recorded on the 

Solution Strategy Recording Form which was used in the analysis phase of the study.  

Administration of the post-assessment lasted between 7 and 14 minutes per student. 

Data Collection Tools and Analysis  

The four research instruments that were employed in this mixed-methods study 

were the Solution Strategy Recording Form (pre- and post-), the Daily Answer Recording 

Slips, the Mathematics Problem Solving Journal, and video recorded observations of 

daily problem solving dyads.  Figure 6 shows the data collection matrix for this study. 
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Research Questions and 
Data Sources 

Solution 
Strategy 
Recording 
Form (pre- 
and post-) 
 
 
Quan & Qual 

Daily 
Answer 
Recording 
Slips 
 
 
 
Quan 

Mathematics 
Problem 
Solving 
Journal 
 
 

 
Quan 

Video 
recorded 
observations 
of dyads’ 
problem 
solving 
 
Quan & Qual 

 
1.  How does a class of 
second grade students at 
San Marcos Elementary 
solve Cognitively Guided 
Instruction-style contextual 
word problems?  
 

 
 
 

X 

   
 
 

X 

 
2.  How and to what extent 
does partnered Cognitively 
Guided Instruction-style 
mathematics word problem 
solving through guided 
incremental steps affect a 
class of San Marcos second 
graders’ mathematics 
problem solving abilities?  
 

 
 
 
 

X 

 
 
 
 

X 

 
 
 
 

X 

 
 
 
 

X 

Figure 6.  Relationship between the data collection instruments and research questions. 
 
 

Care was taken when designing the data collection instruments and the innovation 

to maintain validity.  First, to counter the influence of the practice effect, the innovation 

used all of the 11 different problem solving question types and did not strictly focus on 

the five assessed problem types or use parallel problems for the daily problem solving 

questions.  Next, because pre-assessment took place during the first week of school, test 

anxiety and unfamiliarity with the test administrator (me) could have been additional 

threats to validity related to testing.  To counter these threats, I used the first two days of 

the school year, before testing began, to allow the students to get comfortable with me, 
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and I spent as much time as possible talking with the students.  I also thoroughly 

explained the testing procedure to students in child-friendly terms before the pre-

assessment began to minimize test anxiety caused by unfamiliarity with the testing 

procedure; a statement such as, “I will be asking you five math problem solving questions 

so I can get to know you better and learn how you solve math problems,” was used.  

History could have been the greatest threat to validity in this study (Smith & Glass, 

1987).  This innovation was in addition to my usual mathematics instruction.  I countered 

the history effect by not including additional similar style problem solving opportunities 

in the daily second grade level traditional math instruction students received; rather, daily 

traditional mathematics instruction focused other topics in mathematics related to the 

conceptual development of number sense and operation. 

Solution Strategy Recording Form for the pre- and post-assessments.  The 

Solution Strategy Recording Form for the pre-/post-assessment instrument was created to 

gather data for both Research Question 1 and Research Question 2, how a class of second 

grade students solve Cognitively Guided Instruction-style contextual word problems and 

how partnered Cognitively Guided Instruction-style mathematics word problem solving 

affects second graders’ mathematics problem solving abilities.  Quantitative and 

qualitative data were collected using the pre-/post-assessment and recorded on the 

Solution Strategy Recording Form.  Quantitative data, in the form of correctness of 

student answer, solution strategy used, and solution strategy subset used, were collected.  

Correctness of solution was transferred to the Student Answer Correctness Chart 

(Appendix F) for ease of analysis.  Then, all of the quantitative data were entered into 

Statistical Package for the Social Sciences (SPSS) computer-based data analysis 
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software.  Qualitative data, in the form of student’s verbal solution strategy used or 

teacher’s recorded notes on student’s solution strategy, were written on the Solution 

Strategy Recording Form.  As data were collected, data were transcribed using the 

Microsoft Word word processing program onto the Video Recording Observation 

Protocol (Appendix G). 

 Creation and administration of the pre-/post-assessment.  The five problems in 

the pre-assessment were higher cognitive demand CGI-style addition or subtraction word 

problems, and they were problem types that students who enter my classroom generally 

have difficulties solving.  CGI posits that there are 11 different addition and subtraction 

problem types (Carpenter et al., 1999).  This pre-/post-assessment utilized five of these 

problem types: Join, Change Unknown (addition with the second addend missing); Join, 

Start Unknown (addition with the first addend missing); Separate, Change Unknown 

(subtraction with the subtrahend missing); Separate, Start Unknown (subtraction with the 

minuend missing); and Compare, Referent Unknown (addition or subtraction without an 

action in the problem’s wording) (Carpenter et al., 1999).  The five different problem 

types selected for the pre-/post-assessment have been found to be within second graders’ 

zone of proximal development when they involve one- and two-digit numbers.  Start 

Unknown, which was included in the pre-/post-assessment, and Compare Quantity 

Unknown, which was not included in the pre-/post-assessment, are the most difficult for 

students of this age to solve (Willis & Fusion, 1988).  Additionally, the problem types in 

the assessment are similar to problems students would be expected to solve on the 

mathematics section of the Stanford 10 assessment.  Figure 7 shows the solution strategy 

subtypes one would expect to be used by students taking this pre-/post-assessment.   
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Problem Type Direct Modeling 
Strategies: 

Strategy Description 

Counting Strategies: 
Strategy Description 

 
Join (Change Unknown) 
Chuck had 3 peanuts.  Clara 
gave him some more peanuts.  
Now Chuck has 8 peanuts.  
How many peanuts did Clara 
give to him? 

 
Joining To 
A set of 3 objects is 
constructed.  Objects are 
added to this set until there 
is a total of 8 objects.  The 
answer is found by 
counting the number of 
objects added. 

 
Counting On To 
A forward counting 
sequence starts from 3 and 
continues until 8 is 
reached.  The answer is the 
number of counting words 
in the sequence. 
 

 
Separate (Change Unknown) 
There were 8 people on the 
bus.  Some people got off.  
Now there are 3 people on the 
bus.  How many people got 
off the bus? 

 
Separating To 
A set of 8 objects is 
counted out.  Objects are 
removed from it until the 
number of objects 
remaining is equal to 3.  
The answer is the number 
of objects removed. 

 
Counting Down To 
A backward counting 
sequence starts from 8 and 
continues until 3 is 
reached.  The answer is the 
number of words in the 
counting sequence. 

 
Join (Start Unknown) 
Deborah had some books.  
She went to the library and 
got 3 more books.  Now she 
has 8 books altogether.  How 
many books did she have to 
start with? 

 
Trial and Error 
A set of objects is 
constructed.  A set of 3 
objects is added to the set, 
and the resulting set is 
counted.  If the final count 
is 8, then the number of 
objects in the initial set is 
the answer.  If it is not 8, a 
different initial set is tried. 

 
Trial and Error 
A number is selected and a 
forward counting sequence 
starts from the number and 
continues until 8 is 
reached.  If the count of 
numbers is 3, then the 
initial number is the 
answer.  If the count of 
numbers is not 3, then a 
different initial number is 
tried.  

Figure 7.  Students’ solution strategy subtype expected to be used and examples.  Adapted  
 
from Children’s Mathematics: Cognitively Guided Instruction (p. 19 & 23), T. P.  
 
Carpenter, E. Fennema, M. L. Franke, L. Levi, & S. B. Empson, 1999, Portsmouth, NH:  
 
Heinemann.  Copyright 1999 by Thomas P. Carpenter, Elizabeth Fennema, Megan Loef  
 
Franke, Linda Levi, Susan B. Empson. 
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The decision to include a reduced number of problems was due to time limitations 

of the study and an understanding of the developmental level of beginning second grade 

students; each question on the assessment took up to three minutes for the student to 

solve and asking students to solve 11 questions was not developmentally appropriate.  I 

believed that adequate generalizations could be made based on student solution strategies 

and answers to the five questions.  Additionally, five questions were approximately 45% 

of the problem types, which was large enough to be representative of the group of 

problems involved in the study.  All five assessment questions were taken directly from 

Children’s Mathematics: Cognitively Guided Instruction (Carpenter et al., 1999).  

Because this research study took place at the beginning of the school year, I had not 

provided students with in depth instruction on two-digit numbers over 20 nor any three-

digit numbers before the pre-assessment was administered.  Numbers in the assessment 

problems were kept below the number 20 so that understanding of the numbers would not 

affect student achievement on the pre-assessment nor post-assessment.   

A researcher familiar with this study and qualitative and quantitative data 

collection tools, a curriculum specialist experienced in teaching second grade students, 

and a mathematics education professor reviewed the pre-/post-assessment before it was 

used with students.  They checked for bias in the question wording, validity of the 

numbers contained in the problems, comprehensibility for a second grader, and 

effectiveness in obtaining data related to the research questions.  Additionally, in January 

2012, the pre-/post-assessment was piloted with a sample of five second grade students 

similar to the students who participated in this study.  The pilot showed 
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comprehensibility for second grade students and a developmentally appropriate amount 

of time needed to complete the assessment. 

The assessment questions were selected with consideration to typical second 

grade student vocabulary and language understandings of FEP students who have 

recently been exited from the English language development program.  During the 

assessment, I reread each question as many times as necessary.  The student could choose 

any or none of the realia, manipulatives, or paper/pencil to help the student solve the 

problem.  As the student was solving the problem, I recorded the student’s actions taken 

to solve the problem, answer, correctness of the answer, solution strategy, and solution 

strategy subset on the Solution Strategy Recording Form.  After the student told me the 

answer, if the student had not verbally or visibly solved the problem, I questioned using 

the prompt, “Please explain to me how you solved that problem.”  This was done so I 

could gain a full understanding of how the student solved the problem, because a student 

sometimes uses strategies that are not visible to the teacher, such as Counting On 

mentally or using Derived Facts mentally (Carpenter et al., 1999).  Without asking the 

student to explain the solution strategy, valuable information could go unnoticed and 

unnoted.  The Solution Strategy Recording Form was created to gain insight into how 

students solved problems before this innovation and how they solved problems after the 

innovation was implemented.   

The Solution Strategy Recording Form was stapled into a packet for each student 

and contained a separate page for each assessment question.  At the end of the study, each 

student had a Solution Strategy Recording Form packet for the pre-assessment and a 

separate recording form packet for the post-assessment.  The packet was designed to 
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facilitate collection of both qualitative and quantitative data.  Qualitative data about how 

the child solved the problem was recorded as written field notes and student reflections 

on the lines behind the heading student actions.  Quantitative data were collected from 

the headings Is the student’s answer correct?, solution strategies, and solution strategy 

subset.  The qualitative data recorded on this form helped investigate Research Questions 

1 and 2.  It shed light on how the second grade participants in this study solved CGI-style 

word problems and how participating in guided incremental problem solving steps 

affected students’ problem solving abilities.  The quantitative data recorded on this form 

helped answer Research Question 2, how and to what extent the innovation affects the 

correctness of students’ problem solving solutions.  

Daily Answer Recording Slips.  The daily word problems posed to students 

during the first five weeks of the 12 week innovation period were answered on Daily 

Answer Recording Slips.  During this time period, 25 different CGI-style word problems 

from the 11 CGI addition and subtraction problem types which were semi-randomly 

assigned to each phase of the innovation were asked.  No two problems of the same type 

were asked back-to-back.  Ten of these addition or subtraction word problems were asked 

during Phase 1 of the innovation, five during Phase 2, and 10 addition or subtraction 

word problems were asked during Phase 3.  All problems were either directly stated in 

Children’s Mathematics: Cognitively Guided Instruction (Carpenter et al., 1999) or 

adaptations of these CGI problems, following the same format but including different 

values, names, and situations in the problems.  To ensure reliability in the created 

problems, a teacher familiar with CGI reviewed all 25 contextual problems, checking 

their wording, numbers, and coherence within the CGI category that they were assigned. 
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The Daily Answer Recording Slips went hand-in-hand with the Mathematics 

Problem Solving Journals, and were used to collect data daily from each student which 

pertained to Research Question 2, how partnered CGI-style daily word problem solving 

through incremental steps affects students’ problem solving abilities.  Each student wrote 

a numerical answer on a Daily Answer Recording Slip.  Quantitative data were collected 

from these slips in the form of correctness of students’ answers.  Data were entered into 

SPSS as either yes (correct) or no (incorrect) to be analyzed.  The class mean was 

calculated, with an expected increase in the daily class mean to occur as the problem 

solving innovation progressed through the phases.  From there, a paired-samples t-test 

was conducted to find the statistical significance of the change.  Additionally, item 

analysis provided more insights into specific problem types.  The Daily Answer 

Recording Slips were piloted in the Spring of 2012 with a second grade class similar to 

the study class.  The pilot showed that the slips were comprehendible for second grade 

students and collected quantitative data reliably.  Additionally, a researcher familiar with 

this study reviewed the slips and found no faults with their format. 

Mathematics Problem Solving Journal.  The Mathematics Problem Solving 

Journal was used during the final seven weeks of the 12 week innovation period, as a 

place for students to solve and record their solutions for their daily word problems.  The 

benefits of having a Problem Solving Journal is that it provides students a place to record 

anything from simple drawings to get the problem solving process started all the way up 

to multiple solution strategies.  By recording their solution strategy, students are able to 

recall their investigative work more easily when reporting their solution to the class 

(NCTM, 2004).  The Mathematics Problem Solving Journal was set up in a book-like 
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format.  It was created by inserting pages with one question printed on each page into a 

folder using tangs.  The directions for each page were printed at the top of the page 

followed by that day’s contextual problem.  For questions in Phase 4 and Phase 5 there 

was a large open portion in the middle of the page where students could draw their 

schematic representation of the problem.  At the bottom of each page there was a line that 

started out with the word Answer and had a statement with a blank in it where students 

recorded their answer to that problem (Appendix D, p. 91 - 105).  For the questions in 

Phase 6, there was also a line labeled with the words Number sentence where students 

wrote the number sentence they used to solve the problem (Appendix D, p. 106 - 110).  

For questions in Phase 7 of the innovation, there was no space for a schematic 

representation to be drawn, but there was space to record a number sentence as well as a 

space for the answer (Appendix D, p. 111 - 125).     

The Mathematics Problem Solving Journal was analyzed to directly provide 

information about Research Question 2.  It was used to collect quantitative data in the 

form of solution correctness of each problem.  The Mathematics Problem Solving Journal 

was used to collect data for concurrent triangulation with data gathered through the 

Solution Strategy Recording Form for the pre- and post-assessments (Creswell, 2009) as 

well as a place for students to record their schematic representations of the daily word 

problems during Phase 4 and Phase 5 of the innovation and to record the number 

sentences students used to solve the daily word problems during Phase 6 and Phase 7.   

The Mathematics Problem Solving Journal contained 35 different CGI-style word 

problems which had been semi-randomly assigned to each step of the innovation from the 

11 CGI addition and subtraction problem types.  No two problems of the same type were 
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presented back-to-back in the Mathematics Problem Solving Journal.  There were five 

addition or subtraction word problems for Phase 4, 10 addition or subtraction word 

problems for Phase 5, five addition or subtraction word problems for Phase 6, and 15 

addition or subtraction word problems for Phase 7.  All problems were either directly 

stated in Children’s Mathematics: Cognitively Guided Instruction (Carpenter et al., 1999) 

or were adaptations of these CGI problems, following the same format but including 

different values, names, and situations in the problems.  To ensure reliability in the 

created problems, a teacher familiar with CGI reviewed all 35 contextual problems, 

checking their wording, numbers, and coherence within the CGI category that they were 

assigned. 

Video recorded observations.  Video recordings were used to collect 

quantitative and qualitative data on Research Question 1, how a class of second grade 

students solves GGI-style word problems, and quantitative and qualitative data on 

Research Question 2, how and to what extent partnered Cognitively Guided Instruction-

style mathematics word problem solving through guided incremental steps has an effect 

on class of San Marcos second graders’ mathematics problem solving abilities.  Once 

weekly, on Wednesdays, three dyads were video recorded during the students-at-work 

phase of the daily problem solving innovation.  A Flip camera on a tripod was used to do 

the video recorded observations because this type of observation is less intrusive than 

traditional teacher observations (Creswell, 2009).  Transcription of the dialogue and 

observation notes of the actions of the dyad onto the Video Recording Observation 

Protocol took place following the video recording.  A benefit of video recorded 

observations is that they can provide completeness of analysis because videos and 
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subsequent transcriptions can be observed numerous times through different foci 

(Erickson, 1986).  I looked for how the students truly solved the problem.  Did they solve 

the problem using that phase’s solution strategy, or did they rely on another strategy?  I 

also looked for how working with a partner impacted solutions and solution strategies.  

Video recordings also reduce observer on primitive analytic typification by making it 

easier to review material before making inferences about it (Erickson, 1986).   

  Observations are an effective data collection instrument, especially when 

looking at the actions of participants.  Issues may arise with self reporting because of the 

maturity level of participants, cognizance of one’s own actions, or subtleties of 

interactions between participants (Corbin & Strauss, 2008).  During the mathematics 

problem solving study that I conducted in the Spring of 2011, which I mentioned 

previously, I found that there were discrepancies between what my second grade students 

reported they did and what they actually did to solve a problem.   

Video recorded observation participants in this study were selected using rank 

order purposeful sampling and stratified random sampling but were not selected because 

of superior mathematical problem solving ability (Creswell, 2009; Gay, Mills, & 

Airasian, 2009).  To select participants, dyads were ranked from highest to lowest in their 

problem solving abilities on the pre-assessment, based on the number correct and 

complexity of solution strategy used.  The highest and the lowest dyads on the list were 

automatically selected as video recorded observation participants.  The names of the 

members of the middle four dyads were then written on a slip of paper each and put into a 

hat.  One group was randomly selected to participate in the video recorded observations 

as the medium ability group (Gay et al., 2009).  This sample was three out of 11 dyads, 
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which was about 27% of the population of this study.  The goal of qualitative research 

sampling is to get to data saturation, and with this size sample, I think I did.  In a pilot 

test of this data collection technique, conducted in February 2012, students were unfazed 

by the presence of the video camera and student-to-student interactions appeared 

authentic. 

Role of the Researcher-Practitioner 

Throughout this plan, I acted as a researcher-practitioner.  My job was to serve as 

the translator of participants’ words and actions.  I observed, analyzed, interpreted, and 

reported from the participants to the reader (Corbin & Strauss, 2008).  During different 

phases of innovation, I had different jobs.  For example, when pre- and post-assessment 

data were being collected, I served as researcher and practitioner, interacting with 

students as a teacher while collecting study data.  When video recorded observations 

were being conducted, I served as a complete observer, researcher, and practitioner, but 

not participant (Creswell, 2009).  I did not engage with the dyad being recorded, as to not 

skew their selected solution strategy or final answer.  When students were sharing their 

solution strategy with the class, I served as practitioner, facilitating the discussion as 

needed, but, on rare occasions, I also was a participant when no other MKOs were 

available to model that solution strategy (Stringer, 2007).  This occurred three times 

throughout the innovation process. 

Throughout the study, I served as the classroom teacher, as well as the designer, 

innovation implementer, assessor, and analyzer of the data.  I prepared the pre-/post-

assessment and CGI-style problem for each day, assessed each student using the pre-

assessment, and paired the students for their daily problem solving tasks, as well as 
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facilitated the in-class discussions through selecting the MKOs and kept the discussion 

flowing when needed.  When the innovation had concluded, I reassessed all participants 

using the post-assessment, analyzed and categorized student solution strategies, recorded 

solution correctness on charts and in SPSS, coded, and analyzed the data and findings.  I 

then compared and integrated data sources to create warranted assertions and reported 

them (Greene, 2007). 

Mixed Methods Analysis   

The quantitative and qualitative data from this study carried equal weight in the 

analysis process.  Quantitative data were collected through four sources.  First, the pre-

assessment was administered with results recorded on the Solution Strategy Recording 

Form and transferred to the Student Answer Correctness Chart and the Student Answer 

Solution Strategy Chart (Appendix H).  Second, the post-assessment was administered 

with results recorded on the Solution Strategy Recording Form and transferred to the 

Student Answer Correctness Chart and the Student Answer Solution Strategy Chart.  

Third, the students’ daily problem solving answers were recorded on the Daily Answer 

Recording Slips and in the Mathematics Problem Solving Journal and then compiled on 

the Daily Problem Solving Answer Chart (Appendix I).  Fourth, the video recorded 

weekly observations were analyzed for solution strategy used, problem type, number of 

words said, and length of problem solving, and these data were recorded on the Video 

Recorded Observation Dyads Transcription Data Chart.   

Qualitative data were collected in three formats.  First, three dyads solving 

mathematics word problems were video recorded weekly.  These video recorded 

observations were transcribed onto the Video Recording Observation Protocol.  Second, 
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descriptions of the words and actions students used to solve problems on the pre-

assessment were recorded on the Solution Strategy Recording Form and then transcribed 

using the Microsoft Word word processing program.  Third, descriptions of students’ 

words and actions used to solve post-assessment problems were recorded on the Solution 

Strategy Recording Form and transcribed using Microsoft Word in the same fashion as 

the pre-assessment qualitative data were collected and recorded.  Figure 8 shows the data 

collection documents inventory. 

 

Data Inventory 

Pre-assessment: Solution Strategy 
Recording Form 

19 students x 5 pages of forms = 95 pages  

Pre- and Post-assessment:  Student Answer 
Correctness Chart 

1 typed page 

Pre- and Post-assessment:  Student Answer 
Solution Strategy Chart 

1 typed page 

Pre-assessment:  Solution Transcription 
Chart 

8 typed single spaced pages 

Post-assessment:  Solution Strategy 
Recording Form 

19 students x 5 pages of forms = 95 pages  

Pre- and Post-assessment:  Student Answer 
Solution Strategy and Strategy Subset 
Chart 

1 typed page 

Post-assessment:  Solution Transcription 
Chart 

8 typed single spaced pages 

Daily Answer Recording Slips 19 students x 25 slips = 475 slips 
Mathematics Problem Solving Journals 19 students x 35 pages = 665 pages 
Daily Problem Solving Answer Chart 2 typed pages 
Video Recorded Weekly Observations 1 hour 36 minutes 
Video Recording Observation Protocol 3 groups x 13 observations x 1 typed single 

spaced page per observation = 39 typed 
single spaced pages 

Video Recorded Observation Dyads 
Transcription Data Chart 

3 typed pages 

Figure 8.  Data collection inventory. 
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Quantitative.  The impact of this mathematics innovation was gauged 

quantitatively by investigating the correctness of students’ answers on the pre-assessment 

compared to the post-assessment, comparing the complexity of the solution strategies 

used during the pre-assessment and the post-assessment, looking at the percentage of 

problems students solved correctly on the first 20 daily problem solving questions as 

compared to the final 20 daily problems, and comparing the amount of time video 

recorded dyads spent solving problems and the number of words they said while solving 

problems at the beginning of the innovation to the end.   

Pre-assessment and post-assessment.  During pre- and post-assessments, 

students’ answers were first recorded on the Solution Strategy Recording Form.  From 

there, data were recorded on the Student Answer Correctness Chart using the Microsoft 

Word program as either a Y indicating that the answer was correct or an N indicating that 

the answer was incorrect.  These correctness data were entered into SPSS and the means 

of the pre- and post-assessments were computed.  A paired-samples t-test was conducted 

to find if the difference in performance was significant pre- to post-.  Additionally, the 

number of problems each student solved correctly and incorrectly was computed and 

transformed into percents, the total percentage correct and incorrect per assessment 

question was calculated, and paired-samples t-tests were performed to find if the change 

in percentage correct from pre- to post- for each test question was statistically significant.   

The Solution Strategy Recording Form that was used to record student answers on 

the pre- and post-assessments was also used to record the solution strategy and strategy 

subset that students used to solve each test question.  CGI posits that students’ solution 

strategies progress through the early elementary years from using Direct Modeling 
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strategies, to Counting strategies, to Number Facts to solve problems.  Progression 

through these phases vary from child to child, and children vary strategies based on the 

problem type they are presented (Carpenter et al., 1999).  The solution strategy and 

solution strategy subset were circled on the table at the bottom of the Solution Strategy 

Recording Form.  These data were then transferred onto the Student Answer Solution 

Strategy Chart in coded form.  The first solution strategies were coded as 0 to indicate 

that no solution strategy was used or that a student guessed on the answer, 1 to indicate 

that a Direct Modeling strategy was used, 2 to indicate that a Counting strategy was used, 

or 3 to indicate a Number Facts strategy was used.  Solution strategies developed in 

complexity with a 0 strategy being the least complex and a 3 strategy being the most 

complex.  Strategy subsets were further coded using a second number, from 1 through 6.  

For example, a student who answered Assessment Question 1 using a Direct Modeling, 

Joining All strategy would be coded as 1-1.  A student who answered the same question 

using a Number Facts, Recalled Fact strategy would have the answer coded as 3-2.  The 

solution strategy subset number did not correspond with a higher level complexity in 

strategy subset used.  Using this coding strategy allowed for ease of analysis using SPSS.  

Figure 9 displays the different solution strategies and solution strategy subsets that 

students may employ when solving CGI-style word problems, as well as the coding 

system used in this study.   
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Solution 
strategy 

No specific 
solution 
strategy 
Code:  0 

Direct Modeling 
 
 

Code:  1 

Counting 
 
 
Code:  2 

Number Facts 
 
 
Code:  3 

Solution 
strategy  subset 

Guess or no 
answer 
Code: 0 

Joining All 
 
Code:  1-1 

Counting On 
From First 
Code:  2-1 

Derived Fact 
 
Code:  3-1 

 Joining To 
 
Code:  1-2 

Counting On 
From Larger 
Code:  2-2 

Recalled Fact 
 
Code:  3-2 

 Separating From 
 
Code:  1-3 

Counting On To 
 
Code:  2-3 

 

 Separating To 
 
Code:  1-4 

Counting Down 
 
Code:  2-4 

 

 Matching 
 
Code:  1-5 

Counting Down 
To 
Code:  2-5 

 

 Trial and Error 
 
Code:  1-6 

  

Figure 9.  Solution strategies and strategy subsets with codes. 
 
 

 Differences in solution strategies and solution strategy subsets used on the pre-

assessment and post-assessment were analyzed.  First, the frequency of solution strategies 

was calculated for the entire pre-assessment and the entire post-assessment.  These results 

were then checked for statistical significance through a paired-samples t-test using SPSS.  

Next, these data were further analyzed by calculating the frequencies of solution strategy 

used by assessment question.  After, the frequencies of solution strategy subsets were 

calculated for the entire pre-assessment and the entire post-assessment.  Then, these data 

were further analyzed by calculating the frequencies of solution strategy subsets used by 

students for each problem on the pre-assessment and post-assessment.  Using these SPSS 
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frequency tables, comparisons between pre-assessment and post-assessment solution 

strategy and solution strategy subsets were made.   

Daily problem solving.  Each day students were asked one CGI-style word 

problem, solved the problem using that phase’s strategy, and recorded their answer on the 

Answer Recording Slip or in their Problem Solving Journal.  Answers were then 

compiled on the Daily Problem Solving Answer Recording Chart in Microsoft Word.  

From there, the daily problem solving question answers were scored as either correct (1) 

or incorrect (0) and entered into SPSS.  Analysis was conducted using these data to 

determine if there was a statistical difference between the average correctness of 

students’ answers from the first third of the innovation (20 problems) and the final third 

of the innovation (20 problems) using a paired-samples t-test.       

Video recorded observations.  Three dyads, a high ability group, an average 

ability group, and a low ability group, were video recorded solving their daily problem 

solving word problem one time each week.  These video recorded observations were 

viewed and data from them were entered on the Video Recorded Observation Dyads 

Transcription Data Charts (Appendix J) using Microsoft Word.  This chart contained 

information on the problem type, the correctness of the answer, the number of words the 

dyad said while solving the problem, and the length of time it took the dyad to solve the 

problem for each observed word problem.  Length of time to answer questions in seconds 

was entered into SPSS, as well as the number of words the dyads said while solving each 

problem.  The mean length of time it took each of the three dyads to solve problems in 

Phase 1 was calculated and compared with the mean length of time it took each dyad to 

solve problems in Phase 7.  A paired-samples t-test was conducted to find significance of 
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the difference between the amount of time it took dyads to complete problem solving 

questions at the beginning of the innovation and the end of the innovation.  Then the 

mean number of words spoken during Phase 1 for each dyad was calculated and the mean 

number of words spoken in Phase 7 for each dyad was calculated.  The difference in 

number of words spoken during daily problem solving from the beginning of the 

innovation to the end of the innovation was analyzed using a paired-samples t-test.   

Qualitative.  Qualitative data were collected during this study to describe how 

students solved CGI-style word problems, to help explain why students solved problems 

in the ways they did, to find the effect of the innovation on students’ problem solving 

strategies, and to shed light on the interactions between members of the problem solving 

dyads. 

 Pre-assessment and post-assessment.  When administering the pre-assessment 

and the post-assessment, I paid close attention to how students solved the problems and 

wrote down everything they said and did while deriving their solution on the Solution 

Strategy Recording Form.  This information was then transcribed in a Microsoft Word 

chart called the Pre- and Post-assessment Solution Transcription Chart (Appendix K).  

Constant comparative method was employed to analyze students’ strategies used to solve 

problems on the pre-assessment and the post-assessment.  Constant comparative method 

of data analysis allows two sets or sources of data to be compared and similarities and 

differences to be found (Corbin & Strauss, 2008).  First, students’ verbal and nonverbal 

strategies were read individually and memos on sticky notes were written noting 

commonalities among the students’ solution strategies.  Transcriptions of strategies were 

reread and the important phrases were marked.  During this process, I asked myself 
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questions about the data to find out what the participant’s responses really meant–the true 

meaning of their words beyond a surface level–to make sure I was interpreting them 

correctly and painting an accurate picture of what the student intended to say and what 

the data as a whole said (Corbin & Strauss, 2008).  The reading and rereading process 

continued for all of the participants’ data, making memos on sticky notes of 

commonalities.  Open coding–categorizing the list of phrases and actions, forming basic 

groups that were related, such as strategies, emotions, actions, and levels of 

understanding–of the important words and phrases occurred (Corbin & Strauss, 2008; 

Glaser & Strauss, 1967).  The categories were operationalized by defining what each 

category specifically meant and encompassed.  To ensure reliability, another evaluator 

was enlisted to spot-check the phrase lists, looking for accuracy in, understanding of, and 

agreement with the categories.  When agreement was met, preliminary codes–labels 

given to organized groups of data–for the categories were created and two or three letter 

abbreviations were assigned for each code (Gay et al., 2009).  Again, to ensure reliability, 

another evaluator was enlisted to create codes for the lists of phrases, and our lists of 

codes were compared.  The most appropriate codes for this data analysis were agreed 

upon.  The data were coded by writing the code two-letter abbreviations above the key 

phrases circled in the observation data.  Lists of all of the phrases for each code were 

made and the lists were enumerated by counting number of times each code appeared in 

the data to determine stability (Johnson & Christensen, 2004).  Based on this open 

coding, axial coding–relating preliminary codes to each other creating larger, more robust 

codes–took place.  During axial coding, all preliminary codes were merged into codes 

that encompassed all students’ solution strategy words and actions and could be related to 
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theoretical models (Corbin & Strauss, 2008; Glaser & Strauss, 1867).  All of the coded 

data and categories were imported into a Microsoft Word chart titled Categories Pre- and 

Post-assessment Solution Strategies (Appendix L) under the headings code, category, 

definition, and examples.  The chart was read and altered repeatedly until saturation 

occurred.  From there, selective coding was used to weave a relationship between 

categories; the axial codes were used to create the core codes for pre- and post-

assessment student problem solving (Corbin & Strauss, 2007).  In this final step, data 

were analyzed and reduced to descriptive form, creating themes, which were recorded on 

sticky notes (Greene, 2007).  From the sticky notes, a finalized bulleted list of themes 

was created.  An example of a theme is, “Checking over work.” 

Video recorded observations.  Once a week three dyads participated in video 

recorded observations by having their students-at-work portion of the day’s problem 

solving process recorded.  Their video recorded observations were watched and 

transcribed into the chart titled Video Recording Observation Protocol using the 

Microsoft Word program.  These transcriptions included both what the students said and 

what they did while solving their daily word problems, as well as my reflective notes on 

their problem solving process.  The video recorded observations or transcription of the 

observations are not data themselves; what is done with them is what constitutes data 

(Erickson, 1986), so constant comparative method was used to analyze the qualitative 

video recorded observations field notes (Corbin & Strauss, 2008; Strauss & Corbin, 

1998).  First, the actions and words of the dyads’ solution strategies were read and reread.  

From doing this, it was found that the beginning of the innovation observations contained 

strategies that were too different among dyads to effectively combine, so only the 
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transcription from the last phase of the innovation, Phase 7, was included in the coding 

process at this time.  The process for creating categories, axial codes, and themes 

developed in an almost identical process to the way in which the pre- and post-

assessment qualitative data were analyzed.  Important phrases were circled and a list was 

made of those phrases.  Open coding was done by making a list of the circled important 

phrases and then categorizing them into related groups, such as reasons, emotions, or 

actions.   

The categories were operationalized so that a clear idea of each category was 

created.  Another evaluator was again enlisted to spot-check the phrase lists, looking for 

accuracy in, understanding of, and agreement among the categories.  Codes for the 

categories were created and two or three letter abbreviations were assigned to the codes.  

The other evaluator checked the codes for inclusiveness and accuracy.  Lists containing 

all of the phrases for each code were created and the number of times each code appeared 

in the data was counted to determine stability.  During this step, two similar codes with 

low usage counts were combined.  The open codes and examples were entered into a 

Microsoft Word chart titled Categorized Video Recorded Observation Data Form 

(Appendix M).  Axial codes were created by merging open codes and examples and 

creating codes that were suitably inclusive for all dyads’ daily problem solving solution 

actions and words.  Then, on sticky notes, memos were written about the relationships 

between codes.  All of the sticky notes with memos and statements about dyads’ problem 

solving strategies were gathered and reread.  The information on the sticky notes was 

interpreted and bullet points of traits generated from the information were created.  This 
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bulleted list of traits was then used to create a vignette describing the typical problem 

solving approach students in this study might take during Phase 7 of this innovation. 

 The same method was then used to create traits for the three dyads separately for 

the beginning of the innovation video recorded observation field notes.  As stated 

previously, the strategies, words, and actions employed by the dyads at the beginning of 

the innovation could not be analyzed together because differences among dyads were so 

great that combining field notes would have negated important individual problem 

solving traits.  Understanding of individual dyad’s true problem solving strategies and 

skills would have been lost.  Therefore, the Phase 1 and Phase 2 video recorded 

observation transcriptions were analyzed separately by dyad.  The constant comparative 

method was used for analysis of all three dyads’ field notes in a nearly identical fashion 

to the way the Phase 7 data were analyzed.  Through this analysis process, five or six 

traits were created for each dyad.  These traits were used to create vignettes that depict 

how each dyad might solve a CGI-style word problem at the beginning of the innovation. 

Timetable of the Study 

 Figure 10 shows a timetable of the study, including implementation of the 

innovation steps, data collection methods and times, data analysis methods and times, and 

data reporting procedures and times. 
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Sequence Actions Data 

July 25, 2012-  
July 27, 2012 
 

Pre-assessed Data from student responses to and 
solution strategies used on the pre-
assessment recorded on Solution 
Strategy Recording Form 
(quantitative and qualitative) 
 

July 27, 2012- 
August 17, 2012 
 

Recorded correctness of 
student answers  
 
Recorded student 
solution strategies 
 

Pre-assessment answers and scores 
recorded on the Student Answer 
Correctness Chart (quantitative) 
 
Pre-assessment solution strategy and 
strategy subtypes recorded and coded 
on the Student Answer Solution 
Strategy Chart (quantitative) 
 
Quantitative data input into SPSS 
 
Words and actions of students’ pre-
assessment solution strategies 
transcribed into Solution 
Transcription Chart  
(qualitative) 
 

July 28, 2012- 
July 29, 2012 

Conducted preliminary 
data analysis to form 
daily problem solving 
dyads 

Counted each student’s total number 
correct and solution strategy and 
strategy subset used on pre-
assessment (quantitative) 
 

July 30, 2012- 
August 10, 2012 
 

Implemented Innovation 
Phase 1 
 
Video recorded 
observations of dyads 

Students’ answers written on Daily 
Answer Recording Slips 
(quantitative) 
 
Transcribed observations on the 
Video Recording Observation 
Protocol (qualitative) 
 

(figure continues) 
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Sequence Actions Data 

August 13, 2012- 
August 17, 2012 

Implemented 
Innovation Phase 2 
 
Video recorded 
observations of dyads 

Students’ answers written on Daily 
Answer Recording Slips 
(quantitative) 
 
Transcribed observations on the 
Video Recording Observation 
Protocol (qualitative) 
 

August 20, 2012- 
August 31, 2012 
 

Implemented 
Innovation Phase 3 
 
Video recorded 
observations of dyads 

Students’ answers written on Daily 
Answer Recording Slips 
(quantitative) 
 
Transcribed observations on the 
Video Recording Observation 
Protocol (qualitative) 
 

September 3, 2012- 
September 7, 2012 

Implemented 
Innovation Phase 4 
 
Video recorded 
observations of dyads 

Students’ answers written in 
Mathematics Problem Solving 
Journals (quantitative) 
 
Transcribed observations on the 
Video Recording Observation 
Protocol (qualitative) 
 

September 10, 2012- 
September 21, 2012 
 

Implemented 
Innovation Phase 5 
 
Video recorded 
observations of dyads 

Students’ answers written in 
Mathematics Problem Solving 
Journals (quantitative) 
 
Transcribed observations on the 
Video Recording Observation 
Protocol (qualitative) 
 

September 24, 2012-   
September 28, 2012 
 

Implemented 
Innovation Phase 6 
 
Video recorded 
observations of dyads 

Students’ answers written in 
Mathematics Problem Solving 
Journals (quantitative) 
 
Transcribed observations on the 
Video Recording Observation 
Protocol (qualitative) 
 

(figure continues) 
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Sequence Actions Data 

October 1, 2012- 
November 7, 2012 

Implemented 
Innovation Phase 7 
 
Video recorded 
observations of dyads 

Students’ answers written in 
Mathematics Problem Solving 
Journals (quantitative) 
 
Transcribed observations on the 
Video Recording Observation 
Protocol (qualitative) 
 
Length of problem solving and 
number of words recorded on Video 
Recorded Observation Dyads 
Transcription Data Chart 
(quantitative and qualitative)  
 

November 8, 2012-
November 13, 2012 

Post-assessed Data from student responses to and 
solution strategies used on the post-
assessment recorded on Solution 
Strategy Recording Form 
(quantitative and qualitative) 
 

November 14, 2012-
November 30, 2012 
 

Recorded correctness 
of student answers on 
post-assessment 
 
Recorded student 
solution strategies on 
post-assessment 
 

Post-assessment answers and scores 
recorded on the Student Answer 
Correctness Chart (quantitative) 
 
Post-assessment solution strategy and 
strategy subtypes recorded and coded 
on the Student Answer Solution 
Strategy Chart (quantitative) 
 
Quantitative data input into SPSS 
 
Words and actions of students’ post-
assessment solution strategies 
transcribed into Solution 
Transcription Chart  
(qualitative) 
 

(figure continues) 
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Sequence Actions Data 

December 6, 2012-
January 7, 2012 

Completed data 
analysis 
 

Compiled correctness of students’ 
daily problem solving answers on 
Daily Problem Solving Answer Chart 
(quantitative) 
 
Ran descriptive and t-tests in SPSS 
(quantitative) 
 
Coded data and created themes using 
constant comparative method and 
recorded on Categorized Video 
Recorded Observation Data form and 
Categories Pre- and Post-Assessment 
Solution Strategies (qualitative) 
 

January 8, 2012- 
January 17, 2013 

Created and warranted 
assertions  

Used Erickson’s modified method of 
analytic induction to create and 
warrant assertions (quantitative and 
qualitative) 
 

January 18, 2013- 
March 17, 2013 

Prepared written 
findings 

Compiled all findings into written 
report (quantitative and qualitative 
combined) 
 

March 29, 2013 Defended dissertation Formally presented all findings and 
assertions about study (quantitative 
and qualitative) 
 

Figure 10.  Study timetable. 
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CHAPTER 4 

RESULTS 

 The purpose of this study was to investigate the effects of a guided mathematics 

problem solving innovation, focused on progressing solution strategy complexity through 

incremental steps, on the problem solving skills of a class of second grade students, as 

well as to investigate how these students solved mathematics word problems.  This 

chapter discusses the analysis results of the data collected to provide findings for these 

research questions.     

Analysis Process 

A mixed methods research design, as was employed by this study, provides the 

potential for the better understanding of a phenomena and more detailed results for a 

research problem (Creswell, 2009).  Quantitative and qualitative data were collected 

concurrently and then analyzed separately, as described in Chapter 3.  Quantitative 

analysis of the pre- and post-assessment correctness, pre- and post-assessment solution 

strategy complexity, comparison of the correctness of the first 20 daily word problems 

compared to the final 20 word problems, the length of the students-at-work portion of the 

weekly video recorded dyads at the beginning of the innovation and the end of the 

innovation, and the number of words spoken by video recorded dyads during the 

students-at-work phase comparing the beginning of the innovation and the end of the 

innovation were done using paired-samples t-tests.  Qualitative analysis employed by this 

study was grounded theory.  Words and actions from the pre-assessment and post-

assessment and video recorded dyads’ weekly observations were coded using open, axial, 

and selective coding (Corbin & Strauss, 2008; Strauss & Corbin, 1998).  Words and 
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actions from the pre-assessment and post-assessment as well as video recorded dyads 

were compared using constant comparative method.  This allowed for similarities and 

differences between the data sets on the same topic to be found.  After, assertions for the 

pre- and post-assessment data were created and traits for video recorded dyads were 

formed.    

Quantitative data results.  Quantitative data in this study took the form of a pre- 

and post-assessment, solution strategy and strategy subset, comparison of the correctness 

of the first 20 daily problem solving questions to the last 20 daily problem solving 

questions, the length of the students-at-work portion of the weekly video recorded 

problem solving sessions, and the number of words students said while working in dyads 

to solve the daily word problems.  Data were entered into Microsoft Word charts first for 

preliminary analysis and then further analyzed using SPSS, following the formats 

previously stated.  This quantitative data will be combined with qualitative data from the 

study to make assertions about the effects of this study and to shed light on the study’s 

research questions. 

Pre- and post-assessment.  As described previously, a problem solving 

assessment was administered before implementation and again after the implementation 

concluded.  Students’ answers, solution strategies and strategy subsets, and actions and 

words used when solving the problem were recorded.   

Answer correctness.  Students scored an average of 33.68% correct on the pre-

assessment and 96.84% on the post-assessment.  This was an increase of 63.16%.  The 

type of question did not have an impact on student performance with significant increases 

in performance occurring for all questions.  A paired-samples t-test was conducted to 
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determine if the difference between pre-assessment scores and post-assessment scores 

was statistically significant.  The result indicated that the mean post-assessment score (M 

= 0.9684, SD = 0.07) was significantly greater than the mean pre-assessment score (M = 

0.3368, SD = 0.29), t(18) = 9.66, p < .001.  Table 1 displays the percentage correct per 

assessment question, change in percentage correct from the pre-assessment to the post-

assessment, as well as pre-assessment to post-assessment paired-samples t-test results per 

item on the assessment and the entire assessment. 

 
Table 1 

Paired-samples t-test Comparison in Means from Pre-assessment to Post-assessment by 

Assessment Question  

Question 
Mean  

SD 
95% CI 
LL   UL t(18) p Pre- Post- Difference 

 
1 

 
42.10% 

 
100.00% 

 
+57.90% 

 
0.51 

 
[0.82, 0.33] 

 
4.98 

 
< .001 

 
2 

 
36.84% 

 
100.00% 

 
+63.16% 

 
0.50 

 
[0.87, 0.39] 

 
5.56 

 
< .001 

 
3 

 
47.37% 

 
100.00% 

 
+52.63% 

 
0.51 

 
[0.77, 0.28] 

 
4.47 

 
< .001 

 
4 

 
15.79% 

 
  94.74% 

 
+78.95% 

 
0.42 

 
[0.99, 0.52] 

 
8.21 

 
< .001 

 
5 

 
26.32% 

   
  89.47% 

 
+63.15% 

 
0.60 

 
[0.92, 0.34] 

 
4.61 

 
< .001 

 
Total 

assessment 

 
33.68% 

   
  96.84% 

 
+63.16% 

 
0.28 

 
[0.77, 0.49] 

 
9.66 

 
< .001 

Note.  CI = confidence interval; LL = lower limit; UL = upper limit. 
 

A comparison between student pre-assessment data and post-assessment data is 

shown in Table 2.  As seen from this table, all students increased their percentage correct 

from the pre-assessment to the post-assessment.   
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Table 2 

Pre- and Post-assessment Student Answer Correctness Chart by Student 

Student 
ID # 

Question Number 
% Correct % 

Change 
1 2 3 4 5 

Pre- Post- Pre- Post- Pre- Post- Pre- Post- Pre- Post- Pre- Post- 
 
1 

 
N 

 
Y 

 
N 

 
Y 

 
Y 

 
Y 

 
N 

 
Y 

 
Y 

 
Y 

 
40% 

 
100% 

  
 +60% 

 
2 

 
Y 

 
Y 

 
N 

 
Y 

 
N 

 
Y 

 
N 

 
Y 

 
Y 

 
Y 

 
40% 

 
100% 

  
 +60% 

 
3 

 
N 

 
Y 

 
N 

 
Y 

 
N 

 
Y 

 
N 

 
Y 

 
Y 

 
N 

 
20% 

 
  80% 

  
 +60% 

 
4 

 
Y 

 
Y 

 
N 

 
Y 

 
Y 

 
Y 

 
N 

 
Y 

 
N 

 
Y 

 
40% 

 
100% 

  
 +60% 

 
5 

 
Y 

 
Y 

 
N 

 
Y 

 
Y 

 
Y 

 
N 

 
N 

 
N 

 
Y 

 
40% 

 
  80% 

  
 +40% 

 
6 

 
Y 

 
Y 

 
Y 

 
Y 

 
N 

 
Y 

 
N 

 
Y 

 
N 

 
Y 

 
40% 

 
100% 

  
 +60% 

 
7 

 
Y 

 
Y 

 
N 

 
Y 

 
N 

 
Y 

 
N 

 
Y 

 
N 

 
Y 

 
20% 

 
100% 

  
 +80% 

 
8 

 
N 

 
Y 

 
N 

 
Y 

 
N 

 
Y 

 
N 

 
Y 

 
N 

 
N 

 
  0% 

 
  80% 

  
 +80% 

 
9 

 
N 

 
Y 

 
N 

 
Y 

 
N 

 
Y 

 
N 

 
Y 

 
N 

 
Y 

 
  0% 

 
100% 

 
+100% 

 
10 

 
N 

 
Y 

 
N 

 
Y 

 
N 

 
Y 

 
N 

 
Y 

 
N 

 
Y 

 
  0% 

 
100% 

 
+100% 

 
11 

 
N 

 
Y 

 
N 

 
Y 

 
N 

 
Y 

 
N 

 
Y 

 
N 

 
Y 

 
  0% 

 
100% 

 
+100% 

 
12 

 
N 

 
Y 

 
N 

 
Y 

 
N 

 
Y 

 
N 

 
Y 

 
N 

 
Y 

 
  0% 

 
100% 

 
+100% 

 
13 

 
Y 

 
Y 

 
Y 

 
Y 

 
Y 

 
Y 

 
Y 

 
Y 

 
N 

 
Y 

 
80% 

 
100% 

 
  +20% 

 
14 

 
Y 

 
Y 

 
Y 

 
Y 

 
Y 

 
Y 

 
N 

 
Y 

 
Y 

 
Y 

 
80% 

 
100% 

 
  +20% 

 
15 

 
Y 

 
Y 

 
N 

 
Y 

 
Y 

 
Y 

 
N 

 
Y 

 
N 

 
Y 

 
60% 

 
100% 

 
  +40% 

 
16 

 
N 

 
Y 

 
Y 

 
Y 

 
Y 

 
Y 

 
N 

 
Y 

 
N 

 
Y 

 
40% 

 
100% 

 
  +60% 

 
17 

 
Y 

 
Y 

 
Y 

 
Y 

 
Y 

 
Y 

 
N 

 
Y 

 
N 

 
Y 

 
60% 

 
100% 

 
  +40% 

 
18 

 
N 

 
Y 

 
N 

 
Y 

 
N 

 
Y 

 
N 

 
Y 

 
N 

 
Y 

 
  0% 

 
100% 

 
+100% 

 
19 

 
N 

 
Y 

 
Y 

 
Y 

 
Y 

 
Y 

 
Y 

 
Y 

 
Y 

 
Y 

 
80% 

 
100% 

 
  +20% 

Note.  Y = Correct; N = Incorrect. 
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Solution strategy complexity.  Pre- and post-assessment results were also analyzed 

to find the primary solution strategy and strategy subset used to solve each assessment 

question.  Overall, a paired-samples t-test indicated a statistical difference between the 

strategies students used to solve problems on the pre-assessment and post-assessment.  

More complex strategies were used on the post-assessment (M = 1.21, SD = 0.58) than 

the pre-assessment (M = 2.08, SD = 0.13), t(95) = 8.08, p < .001.  This held true for each 

of the problem types individually, as well.  The more complex strategies were significant 

at the p < .05 level on the post-assessment for all problem types.  Table 3 shows the 

results of the paired-samples t-test.   

 
Table 3 

Paired-samples t-test Comparison for Student Answer Complexity Means from Pre-

assessment to Post-assessment 

  95% CI   
Question M (SD) LL    UL t(18)  p 

 
1 

 
 1.00   (0.94) 

 
[1.45, 0.55] 

 
4.62 

 
< .001 

 
2 

  
 1.21   (0.98) 

 
[1.68, 0.74] 

 
5.40 

 
< .001 

 
3 

  
 0.58   (1.17) 

 
[1.14, 0.02] 

 
2.16 

 
< .045 

 
4 

  
1.05   (1.08) 

 
[1.57, 0.53] 

 
4.25 

 
< .001 

 
5 

    
  0.53   (1.02)  

 
[1.02, 0.03] 

 
2.25 

 
< .037 

Note.  CI = confidence interval; LL = lower limit; UL = upper limit.  0 = Guess or no 
solution strategy; 1 = Direct Modeling strategy; 2 = Counting strategy; 3 = Number Facts 
strategy.  For reference, the Question 1 mean of 1.00 indicates that students increased the 
complexity of their strategy by one level from the pre-assessment to the post-assessment. 
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Table 4 displays a summary of the primary solution strategies students used on 

the pre- and post-assessments and shows the change in their prevalence.  The entire 

Student Answer Solution Chart can be seen in Appendix N.    

 
Table 4 

Summary of Students’ Solution Strategies Used on Pre-assessment and Post-assessment 

Solution Strategy Pre-assessment Post-assessment 
Change in 
Prevalence 

 
No Specific Strategy 

 
  8.42% 

 
  0.00% 

 
  -8.42% 

 
Direct Modeling 

 
73.68% 

 
37.89% 

 
-35.79% 

 
Counting 

 
  6.32% 

 
15.79% 

 
 +9.47% 

 
Number Fact 

 
11.58% 

 
46.32% 

 
+34.74% 

 
 

As shown in the table, 8.42% of questions on the pre-assessment were answered 

using no specific strategy, with a student immediately guessing the answer or not stating 

a numerical answer, whereas no post-assessment questions were immediately answered 

using no specific strategy.  An example of this was when Student 3 answered pre-

assessment Question 2 by saying, “The answer is 3 because I just guessed,” or Student 11 

answering pre-assessment Question 2 by stating that the answer was, “Some books.  I 

thought of it in my head.”  This is in contrast to the post-assessment where all students 

attempted to solve all problems and no students gave a non-numerical answer or 

immediately guessed at an answer without first trying to solve the problem.  Additionally, 

analysis showed that on the pre-assessment Direct Modeling was by far the most 

common solution strategy employed by students, with 73.68% of the solutions being 
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derived by a Direct Modeling strategy, whereas on the post-assessment, 37.89% of the 

solutions were derived from a Direct Modeling strategy.  Number Facts was the most 

common solution strategy used on the post-assessment, with 46.32% of students solving 

problems using a Number Facts strategy.   

Table 5 shows the percentage that each solution strategy was used by students to 

solve the pre- and post-assessment questions.  The Direct Modeling strategy (Level 1) 

was used most commonly on all five pre-assessment questions, but was only the most 

common strategy used on two post-assessment questions.  These were Question 3, which 

was a Separate, Change Unknown problem, and Question 5, which was a Compare, 

Referent Unknown problem.  Number Facts (Level 3) was the most common strategy 

used on three of the five post-assessment questions.  These were Join, Change Unknown, 

Join, Start Unknown, and Separate, Start Unknown problem types.  In addition, no 

students used a Number Facts strategy on Question 1 on the pre-assessment and 42.20% 

(n = 8 out of 19) of the students used a Number Facts strategy to solve Question 1 on the 

post-assessment.  Further, all pre-assessment questions had at least one student derive the 

answer through an immediate guess, but on the post-assessment, no students derived an 

answer through an immediate guess on any assessment problem.  Complete solution 

strategies and the specific strategy subsets used by each student in this study can be seen 

in Appendix M.   
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Table 5 

Solution Strategy Used to Solve Each Pre- and Post-assessment Question Shown in 

Percentages 

 Pre- 1 Post- 1 Pre- 2 Post- 2 Pre- 3 Post- 3 Pre- 4 Post- 4 Pre- 5 Post- 5 
 
Level 0 

 
  5.3 

 
  0.0 

 
10.5 

 
  0.0 

 
10.5 

 
  0.0 

 
10.5 

 
  0.0 

 
  5.3 

 
  0.0 

 
Level 1 

 
84.2 

 
36.8 

 
68.4 

 
15.8 

 
63.2 

 
47.4 

 
68.4 

 
31.6 

 
84.2 

 
57.9 

 
Level 2 

 
10.5 

 
21.1 

 
  0.0 

 
15.8 

 
10.6 

 
15.9 

 
10.6 

 
10.6 

 
  0.0 

 
15.9 

 
Level 3 

 
  0.0 

 
42.2 

 
21.1 

 
68.5 

 
15.8 

 
36.8 

 
10.6 

 
57.9 

 
10.5 

 
26.3 

Note.  0 = Guess or no solution strategy; 1 = Direct Modeling strategy; 2 = Counting strategy; 3 = Number 
Facts strategy.  Columns may not add to 100.00 due to rounding. 
  

Table 6 looks at the students’ strategies more exhaustively by examining the 

strategy subset used on the pre-assessment and post-assessment.  As shown in this table, 

all subsets of Strategies 0 (no solution strategy) and 1 (Direct Modeling), considered to 

be the more basic strategies, decreased in prevalence between the pre- and post-

assessments, whereas all of the subsets of Strategy 3 (Number Facts), considered to be 

the most advanced strategy, increased in frequency.  The two greatest changes in 

percentage of solution strategy subsets used from the pre-assessment to the post-

assessment occurred in the Level 1 (Direct Modeling) and the Level 3 (Number Facts) 

strategies.  The percentage of assessment problems solved using the Number Facts, 

Recalled Fact strategy subset increase 27.37% and the percentage of assessment problems 

solved using the Direct Modeling, Joining All strategy subset decreased 13.68%.  

Students’ individual solution strategy subset used on each assessment question can be 

seen in Appendix O. 
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Table 6 

Solution Strategy Subsets Used During Pre-assessment and Post-assessment 

Solution Strategy Subset 
% of Pre-assessment 

Solutions 
% of Post-assessment 

Solutions Change in Prevalence 
 
0:  No Solution Strategy 

 
  8.42% 

 
           0.00%  

 
  -8.42% 

 
1.1:  Direct Modeling, 
Joining All 

 
13.68% 

 
           0.00%  

 
-13.68% 

 
1.2:  Direct Modeling, 
Joining To 

 
14.74% 

 
           8.42%  

 
  -6.32% 

 
1.3:  Direct Modeling, 
Separating From 

 
21.05% 

 
10.53% 

 
-10.52% 

 
1.4:  Direct Modeling, 
Separating To 

 
  6.32% 

 
          7.37%  

 
  +1.05% 

 
1.5:  Direct Modeling, 
Matching 

 
          5.26%  

 
  5.26% 

 
    0.00% 

 
1.6:  Direct Modeling,  
Trial and Error 

 
12.63% 

 
  6.32% 

 
  -6.31% 

 
2.1:  Counting,  
Counting On From First 

 
  2.11% 

 
          1.05%  

 
  -1.06% 

 
2.2:  Counting,  
Counting On From Larger 

 
  0.00% 

 
  2.11% 

 
  +2.11% 

 
2.3:  Counting,  
Counting On To 

 
  2.11% 

 
  8.42% 

 
  +6.31% 

 
 
2.4:  Counting,  
Counting Down 

 
  1.05% 

 
          2.11%  

 
  +1.06% 

 
2.5:  Counting,  
Counting Down To 

 
  1.05% 

 
  2.11% 

 
  +1.06% 

 
3.1:  Number Facts,  
Derived Fact 

 
  3.16% 

 
10.53% 

 
  +7.37% 

 
3.2:  Number Facts, 
Recalled Fact 

 
          8.42%  

 
35.79% 

 
+27.37% 

Note.  Columns may not add to 100.00% due to rounding. 
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When looking at the solution strategy subsets used to solve each assessment 

question, only Assessment Question 1 and Assessment Question 2 had at least one of the 

same strategy subsets used most commonly on the pre-assessment also used most 

commonly on the post-assessment.  When solving all other questions, students relied on 

different strategies on the post-assessment than they did on the pre-assessment.  Number 

Facts, Recalled Fact was one of the most common solution strategy subsets used to solve 

four out of the five questions on the post-assessment.  Table 7 shows this information by 

presenting the strategy and subset used most commonly broken out by question.   
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Table 7 

Strategy and Strategy Subset Most Frequently Used on the Pre-assessment and Post-

assessment by Question 

Question Pre-assessment Strategy & Subset Post-assessment Strategy & Subset 
 
1 

 
Direct Modeling, Joining To 

 
Direct Modeling, Joining To 

 
 
2 

 
Direct Modeling, Joining All; 
Number Facts, Recalled Fact 

 

 
Number Facts, Recalled Fact 

 
3 

 
Direct Modeling, Separating From 

 
Direct Modeling, Separating To; 

Number Facts, Recalled Fact 
 

 
4 

 
Direct Modeling, Separating From 

 
Number Facts, Recalled Fact 

 
 
5 

 
Direct Modeling, Trial and Error 

 
Direct Modeling, Separating From; 

Direct Modeling, Matching; 
Number Facts, Recalled Fact 

 
Note.  Assessment questions with more than one strategy and strategy subset listed 
indicates that an equal number of assessment questions were solved using those solution 
strategies and strategy subsets. 

 

Table 8 displays the different types of CGI-style addition and subtraction word 

problems employed by this pre-/post-assessment.  It further shows the solution strategies 

and the strategy subsets that CGI posits students are most likely to use when solving 

these types of problems and the strategies and strategy subsets students in this study most 

often used.    
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Table 8 

Problem Types and Solution Strategies and Strategy Subsets Most Commonly Used by 

Primary-Aged Children and Participants in this Study on the Post-assessment 

Problem Direct Modeling Counting Number Facts 
CGI Actual CGI Actual CGI Actual 

 
1: Join,  
Change Unknown 

 
Joining To 

 
Joining To 

 
Counting 
On To 

  
Derived 
Facts 

 

 
2: Join,  
Start Unknown 

 
Trial and 
Error 

 
Joining 
All 

 
Trial and 
Error 

   
Recalled 
Facts 

 
3: Separate,  
Change Unknown 

 
Separating 
To 

 
Separating 
From 

 
Counting 
Down To 

   

 
4: Separate,  
Start Unknown 

 
Trial and 
Error 

 
Separating 
From 

 
Trial and 
Error 

   

 
5: Compare,  
Referent Unknown 

 
** 

 
Trial and 
Error 

 
** 

   

Note.  ** indicates that there is not a primary strategy used to solve that type of problem.  
Children generally use Joining To, Separating From, Counting On To, or Counting Down 
To strategy subsets to solve these problems.  Empty cells indicate that the most common 
strategy subset used to solve this type of problem was not in that solution strategy.  
Adapted from Children’s Mathematics: Cognitively Guided Instruction (p. 25), T. P. 
Carpenter, E. Fennema, M. L. Franke, L. Levi, & S. B. Empson, 1999, Portsmouth, NH: 
Heinemann. Copyright 1999 by Thomas P. Carpenter, Elizabeth Fennema, Megan Loef 
Franke, Linda Levi, Susan B. Empson. 
 
 
 As seen from this table, Assessment Question 1 was the only problem in which 

students participating in this study used the same solution strategy that CGI posited 

students would use.  Additionally, when CGI posited that most students would use the 

Direct Modeling, Trial and Error strategy and subset to answer a problem type, Trial and 

Error was not the most common solution strategy and subset used by students in this 

study.   
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Daily problem solving answers.  As another way of determining the impact of 

this innovation, the students’ correctness on the first 20 daily problem solving questions 

(first third of implementation) was compared to the correctness on the last 20 daily 

problem solving questions (last third of implementation).  The mean percent correct on 

the first 20 daily problem solving questions students solved was 75.01%, and the mean of 

the last 20 daily problem solving questions students solved was 85.34%.  This was an 

increase of 10.33% between the first 20 problems and the last 20 problems students 

solved.  Additionally, a paired-samples t-test was conducted to find the significance of 

the increase in the percentage of daily problem solving questions solved correctly.  The 

results indicated that the average correctness of the set of the last 20 daily problem 

solving questions (M = 0.86, SD = 0.11) was significantly greater than the average 

correctness of the set of the first 20 daily problem solving questions (M = 0.75, SD = 

0.12), t(18) = 4.52, p < .001.  The 95% confidence interval for the average difference 

between the two problem sets was 0.15 and 0.06.  This t-test shows that the increase in 

student daily problem solving performance likely did not occur by chance and instead can 

be associated with the innovation.  Table 9 shows the comparison of correctness between 

the two thirds of the implementation period by student. 

 
 
 
 
 
 
 



 

 
 

88

Table 9 

Comparison of the Percent Correct of the First 20 Daily Problem Solving Questions to 

the Last 20 Daily Problem Solving Questions 

Student ID First 20 Problems Last 20 Problems Change in % Correct  
 
1 89.47% 80.00%    -9.47% 
 
2 80.00% 95.00% +15.00% 
 
3 57.89% 84.21% +26.32% 
 
4 80.00% 90.00% +10.00% 
 
5 78.95% 78.95%     0.00% 
 
6 75.00%         100.00% +25.00% 
 
7 70.00% 85.00% +15.00% 
 
8 55.00% 58.82%   +3.82% 
 
9 64.71% 85.00% +20.29% 
 

10 65.00% 80.00% +15.00% 
 

11 58.82% 76.47% +17.65% 
 

12 68.42% 70.00%   +1.58% 
 

13 95.00% 95.00%     0.00% 
 

14 89.47%         100.00% +10.53% 
 

15 
 

88.89% 
 

88.89% 
     

    0.00% 
 

16 78.57% 84.21%   +5.64% 
 

17 75.00%         100.00% +25.00% 
 

18 65.00% 75.00% +10.00% 
 

19 90.00% 95.00%   +5.00% 
Note.  Students who were absent from the classroom and did not answer a question did 
not have that day’s solution marked correct or incorrect.   
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  Video recorded observation problem solving lengths.  Over the course of the 

innovation, the length of time the video recorded dyads spent solving their daily word 

problem was recorded.  Comparisons between the beginning of the innovation problem 

solving times and the end of the innovation problem solving times were made.  Analysis 

showed that the average length of time it took the video recorded dyads to solve the 

Phase 1 problems was 2 minutes and 54 seconds.  The average length of time it took for 

the dyads to solve the Phase 7 problems was 2 minute and 16 seconds.  A paired-samples 

t-test was conducted to determine if there was a statistical difference in problem solving 

lengths between the beginning of the innovation and the end of the innovation.  For this 

test results indicated that the problem solving length of the first phase (M = 174 seconds, 

SD = 27.71) was not significantly longer than the problem solving length of the last phase 

(M = 136 seconds, SD = 22.27), t(2) = 2.01, p > .10.  The 95% confidence interval for the 

average difference between the two phases was 43.33 and 119.33.  Though there was not 

a statistical significance between the two phases of the innovation, the problem solving 

lengths for all three dyads decreased over the innovation period, with an average decrease 

of 21.84% when comparing Phase 1 to Phase 7.  The results not being significant may 

have been due to small sample size since n = 3. 

 Video recorded observation number of words spoken during problem solving.  

During weekly video recorded observations of each dyad, the number of words spoken 

during the students-at-work portion of the daily problem solving routine was recorded so 

comparisons between the beginning and end of the innovation could be made.  The mean 

number of words students spoke while solving a daily problem was calculated and a 

paired-samples t-test was conducted to find if the number of words spoken during Phase 
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1 was statistically different than the number of words spoken during Phase 7.  Paired-

samples t-test results showed that there was not a statistical difference between the 

number of words said during problem solving in Phase 1 (M = 111.67, SD = 22.41) and 

Phase 7 (M = 80.67, SD = 17.53), t(2) = 1.64, p > .20.  The 95% confidence interval for 

the average difference between the two phases was 50.30 and 112.30.  The overall 

change in number of words said during the daily students-at-work portion of the lesson, 

however, was a decrease of 27.76%.  The lowest ability dyad showed a decrease of 

33.33% and the highest ability dyad showed a decrease of 45.45%.  These results seemed 

more on trend with the overall class’s performance, whereas the medium ability dyad 

increased their number of words said during the students-at-work portion by 2.90%.  This 

dyad was less confident about their problem solving abilities at the beginning of the 

innovation and their confidence appeared to grow throughout the innovation. 

 Qualitative data results.  The actions and words from the pre-assessment and 

post-assessment and the video recorded weekly problem solving observations were 

analyzed using constant comparative method, as described previously.  Through this 

process themes, subthemes, and assertions were created (Strauss & Corbin, 1998), and 

enumeration allowed temporal words to be added to assertions with accuracy because 

codes were counted to check for stability and usage (Johnson & Christensen, 2004).  This 

helped me state the degree to which certain events or responses occurred when stating my 

assertions.  

 Pre- and post-assessment words and actions.  Analysis of the words and actions 

students used when solving pre- and post-assessment questions showed various 

similarities and differences between their problem solving strategies and skills before the 
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innovation implementation and after the innovation.  Using grounded theory, themes 

were created to show these comparisons (Corbin & Strauss, 2008).  Table 10 shows the 

themes, theme related-components, and assertions that can be made relating to 

similarities between the pre- and post-assessment qualitative data.   

 
Table 10    

Pre- and Post-assessment Similarities Themes, Theme Related Components, and 

Assertions 

Themes Theme Related Components Assertions 

 
Breaking 
problem into  
parts can 
create success 

 
Separating problems into steps helped 
lower-ability students. 
 
Students asked researcher to stop 
reading as needed and did the problem 
step by step. 
 

 
When problems were 
presented orally, breaking 
them down into digestible 
parts made them more 
accessible to all students. 

 
Describing 
the solution 
process 

 
Students talked during problem solving 
equally on the pre-assessment and post-
assessment. 
 
Students willingly explained steps used 
to get their answer after solving. 
 
Students explained how they solved the 
problem more when they did not solve 
the problem in their head. 
 

 
Students were willing and 
able to explain their 
thinking about how they 
solve problems. 

 
 
 Evidence of these themes can be seen throughout the pre- and post-assessment 

data.  First, Student 8, who generally struggles with mathematics, was able to make a 

reasonable attempt at solving Assessment Question Number 2 (Deborah had some books.  

She went to the library and got three more books.  Now she has eight books altogether.  
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How many books did she start with?) on the pre-assessment by asking me to reread the 

problem in chunks.  Student 8 said, “Had some books.  How many books?” at which time 

I reread the question.  Student 8 then proceeded to lay out three books on the table, and 

then said, “She bought books and got three.”  Student 8 then laid out more books on the 

table.  Though Student 8’s final solution was incorrect for this problem, the attempted 

solution showed understanding of the individual steps needed to solve the problem.  

Student 8 also used a chunking strategy on the post-assessment.  On Question 1 (Robin 

had four toy cars.  How many more toy cars does she need to get for her birthday to have 

11 toy cars all together?), Student 8 said, “Can you read it again?” and after it being 

reread, Student 8 said, “Stop!”  Student 8 then did the first step of the problem by making 

a rod of 11 unifix cubes.  Afterwards, Student 8 said, “Can you read the problem again?”  

The problem was reread and after the second sentence Student 8 said, “Wait,” and 

proceeded to cover up four unifix cubes, the correct action for that part of the problem.  

Student 8 then touched and counted the remaining unifix cubes and came to the correct 

solution.  Student 15 was able to correctly solve Pre-assessment Problem 4 (Some birds 

were sitting on a wire.  Three birds flew away.  There were eight birds still sitting on the 

wire.  How many birds were sitting on the wire before the three birds flew away?) by 

dividing the problem into parts.  After being read the problem, Student 15 mentally 

divided it into parts by first laying out eight birds.  The student then said, “Some more 

came?” and laid out three more birds.  Finally, the student touched and counted all of the 

birds and came to a correct answer.   

 Another theme that emerged from the pre-assessment and post-assessment was 

that students explained their thinking about how they solved the problems.  On the pre-
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assessment, this occurred 30 times while the students were actively solving problems 

without being elicited with the prompt, “Tell me how you got your answer,” after the 

students had stated their answers.  Students did this 29 times on the post-assessment.  

Student 6 solved Pre-assessment Question 2 (Deborah had some books.  She went to the 

library and got three more books.  Now she has eight books altogether.  How many books 

did she start with?) by explaining each step as it was done.  After the problem was read, 

Student 6 said, “She got how many books,” and set out three books.  Student 6 then said, 

“She started with five books,” and added five books to the pile of three.  Student 6 went 

on to say, “I knew she got three more [books] so it equaled eight.  5 + 3 = 8.”  This was 

very similar to how Student 2 solved the same problem.  Student 2 set out a row of eight 

books, and then explained, “So this is how much she has from the library.”  This student 

then counted and pointed to the five books on the end of the row, and said, “She got five 

more books from the library.”  Student 13 used the Number Facts strategy when 

explaining how to solve Post-assessment Question 1 (Robin had four toy cars.  How 

many more toy cars does she need to get for her birthday to have 11 toy cars all 

together?).  Student 13 said, “I could do 4 + ? = 11.  If I did 4 + 1 that’d equal 5.  4 + 6 

that’d equal 10.  If I did 4 + 7 that’d be 11.  So I think I found my answer, 7.  I know 

because 7 + 3 = 10 and one more is 11.”  After being prompted, Student 14 explained 

how to solve Post-assessment Question 3 (Roger had 13 stickers.  He gave some to 

Colleen.  He has 4 stickers left.  How many stickers did he give to Colleen?) by saying, 

“Thirteen stickers.  Nine.  I put in my brain 13 [sic] and then I said that I know she had 

four so I took away four of them.  I know 13 - 4 = 9.  If you have 13 and you take away 

four you need to break the 10 into ones.  You take four away.  You have nine.”   
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 Analysis also revealed differences between students’ pre- and post-assessment 

words and actions.  Table 11 displays the themes, theme-related components, and 

assertions that were constructed from this assessment data. 

 
Table 11    

Pre- and Post-assessment Differences Themes, Theme Related Components, and 

Assertions 

Themes Theme Related Components Assertions 

 
Causes of 
incorrect solutions 

 
Students made more guesses when 
answering pre-assessment questions (8) 
than when answering post-assessment 
questions (0). 
 
Students guessed the answer to a problem 
when they did not know how to solve it on 
the pre-assessment. 
 
Miscounting caused errors on the pre-
assessment (13) but not on the post-
assessment (0). 
 
The incorrect part of the number sentence 
was identified as the answer more on the 
pre-assessment (11) than on the post-
assessment (0). 
 
Students used the incorrect operation to 
solve a problem more on the pre-
assessment (14) than on the post-
assessment (1). 
 

 
There were four main 
reasons that students 
came to incorrect 
solutions on the pre-
assessment. 

(table continues) 
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Themes Theme Related Components Assertions 

 
Strategies used to 
solve the 
problems 
 

 
Many more answers were derived using 
number sentences on the post-assessment 
(53) than on the pre-assessment (11). 
 
Students more commonly used realia to 
help solve problems on the pre-assessment 
(57) than on the post-assessment (14). 
 
Students solved problems in their heads 
using visualization much more on the post-
assessment (36) than on the pre-assessment 
(9). 
 
Students used fact families to assist in the 
solving of subtraction problems on the 
post-assessment (9). 
 
Students understood what the problem was 
saying and asking on the post-assessment. 
 

 
As problem solving 
ability increased 
students used higher 
level strategies on  
the problem solving 
hierarchy, like 
visualization or 
number sentences. 

 
Checking over 
work 
 

 
A relatively small portion of assessment 
answers and solution steps were checked 
for accuracy (4 on pre-assessment and 22 
on post-assessment). 
 
On the pre-assessment, all students who 
checked over their work had not made an 
error that they needed to fix (4). 
 
On the post-assessment, all students who 
checked over their work (22) found their 
error. 
 
Students checked their work by counting 
and recounting the manipulatives or realia 
they have used (4 on the pre-assessment 
and 9 on the post-assessment). 
 

 
After the innovation, 
students tended to 
identify errors in their 
work when they 
considered the 
reasonableness of their 
answer. 

(table continues) 
 



 

 
 

96

Themes Theme Related Components Assertions 

 Students justify their solution by stating 

a number sentence that could be used to 

solve the problem (11 on the pre-

assessment and 53 on the post-

assessment). 

 

Some students used multiple solution 

strategies when solving a problem to 

ensure accuracy of their answer. 
 

 

  

 The differences in pre-assessment and post-assessment words and actions 

influenced the correctness of students’ solutions.  On the pre-assessment, students were 

more likely to guess at a solution strategy than they were to guess on the post-assessment.  

On the pre-assessment, eight answers were guesses made immediately after the problem 

was read without trying to first solve the problem and on the post-assessment no final 

answers were derived solely by guessing.  This can be seen in Pre-assessment Question 1 

(Robin had four toy cars.  How many more toy cars does she need to get for her birthday 

to have 11 toy cars all together?) when Student 3 gave the answer and the solution 

strategy by saying, “Ten.  I just added in my head.  Ten ones one [sic],” or when Student 

3 answered Pre-assessment Question 2 (Deborah had some books.  She went to the 

library and got three more books.  Now she has eight books altogether.  How many books 

did she start with?) by saying, “Three.  I just guessed.”  Student 11 answered three out of 

the five pre-assessment questions with the answer of, “Some.  I thought it in my mind.”  

Other students, such as Student 16 tried a strategy and then gave up and said any number 

when solving the pre-assessment questions.  This was more common when numbers in 

the problem exceeded 10, and students did not have the knowledge of those number facts 
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yet and did not have enough fingers to use a Direct Modeling or Counting strategy when 

they were not using realia or manipulatives.  Some students countered this by changing 

strategies, such as when Student 7 solved Post-assessment Question 3 (Roger had 13 

stickers.  He gave some to Colleen.  He has four stickers left.  How many stickers did he 

give to Colleen?) by first trying to solve the problem mentally and then changing 

strategies and drawing 13 stickers and erasing them.  Student 7 then said, “This one I’m 

going to do base ten blocks but draw base ten blocks,” and proceeded to draw a rod worth 

10 and three additional ones.  Student 7 then said, “I think I can’t do base ten blocks.  

Wait, I’ll have to split the 10.”  Then, lines were drawn on the rod to divide it into units.  

Student 7 then crossed off four of the units.  Student 7 counted the remaining units and 

got nine.  Then said, “No, I’m going to use dots.  No, I’m going to use these [unifix 

cubes].”  Student 7 made a rod of 13 unifix cubes and touched and recounted them aloud.  

Student 7 then pulled off four cubes from the end and touched and counted the remaining 

cubes.  Student 7 gave the answer by saying, “Nine.” 

 Solution errors were also caused by students miscounting when using Direct 

Modeling or Counting strategies on the pre-assessment.  Of the 95 total problems 

students solved on the pre-assessment, 13 answers were incorrect due in part to 

miscounting.  On the post-assessment, no students’ miscounting caused an incorrect 

answer.  On the pre-assessment, an error caused by miscounting happened when Student 

11 solved Question 1 (Robin has four toy cars.  How many more toy cars does she need 

to get for her birthday to have 11 toy cars all together?) by counting incorrectly and 

making a rod of 10 unifix cubes rather than 11, which the problem called for.  The 

student then said, “She had four,” and pulled four unifix cubes off the rod of 10.  The 
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student then touched and counted the six cubes left and said, “4 + 6 = 11.  She had 11.”  

Students also miscounted when finding the final answer, as Student 19 did when solving 

the same problem.  Student 19 set out four toy cars, and said, “You add.”  Student 19 then 

counted on by laying out more toy cars, saying, “6, 7, 8, 9, 10, 11.”  Student 19 counted 

the pile of toy cars that were just made and said the answer, “Six.”  The miscounting by 

omitting the five in the second set caused the error. 

 Students also made errors on the pre-assessment by identifying the wrong part of 

the number sentence they created as the answer.  On the pre-assessment, students thought 

that the answer of the number sentence was the answer to the word problem, regardless of 

where the variable was, 11 times.  This did not happen after the implementation of the 

innovation on the post-assessment.  On the pre-assessment, Student 4 answered Question 

4 with the answer of eight birds, when the problem stated, “Some birds were sitting on a 

wire.  Three birds flew away.  There were eight birds still sitting on the wire.  How many 

birds were sitting on the wire before the three birds flew away?”  The correct answer was 

11.  This student solved the problem by laying out 11 birds in a row, and then pulling 

three birds away.  Next the student drew three circles and eight squares on a piece of 

paper and recounted the squares.  The student then wrote 11 - 3 = 8 birds.  The student 

said, “First I added eight and three and then I took away three.  Because you said some 

[sic].  I knew 11 - 3 = 8.  I put the other birds on the tree as squares so I don’t [sic] get 

mixed up.  I touched and counted each one.  Eight.”  Another type of number sentence 

error occurred multiple times on the pre-assessment as well.  Students used the wrong 

operation when solving a problem with realia, manipulatives, a schematic representation, 

or in a number sentence on 14 problems on the pre-assessment as compared to only once 
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on the post-assessment.  Student 18 solved Pre-assessment Question 1 (Robin had four 

toy cars.  How many more toy cars does she need to get for her birthday to have 11 toy 

cars all together?) by setting out four toy cars, then counting out 11 more toys cars, and 

finally counting both piles one-by-one.  Student 18 said that the answer was 15.  This 

solution error was caused by adding and using the Joining All strategy rather than 

subtracting and using the Separating From strategy (Carpenter et al., 1999).   

 On the post-assessment, students employed more numerical and mental strategies 

to solve problems than they did on the pre-assessment, and on the pre-assessment 

students used more realia to aid in the problem solving process.  Of other importance to 

this topic is that students were also able to understand what the word problem was saying 

and asking when completing the post-assessment.  This was demonstrated when Student 

10 said, “So we don’t know,” about the amount needed to start solving Post-assessment 

Question 2 which asked, “Deborah had some books.  She went to the library and got three 

more books.  Now she has eight books altogether.  How many books did she start with?”  

This is quite different than the pre-assessment where Student 10 answered this question 

by saying, “She started with three,” and put out three fingers.  Then continued by saying, 

“She bought four more,” and put out four more fingers on the other hand.  Student 10 

finally came to the conclusion of, “And she had eight.”  Backing up this assertion, on the 

pre-assessment Student 11 answered questions with the response, “Some,” not knowing 

that questions were asking for a numerical value, whereas on the post-assessment, 

Student 11 gave correct numerical responses to all questions.   

Higher level problem solving skills stood out on the post-assessment.  Out of the 

95 total problems students were asked to solve on the post-assessment, 53 of the 
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problems were solved in part by using a number sentence.  Students used number 

sentences as their first solution strategy and also to justify or check the answer they came 

up with using another strategy.  Student 17 displayed how using a number sentence as a 

first solution strategy might look when solving Post-assessment Question 3 (Roger had 

13 stickers.  He gave some to Colleen.  He has four stickers left.  How many stickers did 

he give to Colleen?) by saying, “Nine cuz [sic] because 13 - 9 = 4.”  Another example of 

this was when Student 4 solved the same problem.  This student wrote 13 - 9 = 4 stickers.  

The student went on to say, “He gave four to Colleen.  I know because 9 + 4 = 13 and but 

[sic] I put 13 - 9 = 4 stickers because I just switched the numbers around.”  Student 2 

showed how an answer could be checked using a number sentence when solving Post-

assessment Problem 2 by describing that at first, “I put some in my head.  Then I counted 

on until I got to eight.”  Student 2 modeled this step with head nods, and went on to say, 

“I know that 5 + 3 is 8.  Because on the little slip it says 5 + 3 is 8.”   Additionally, 36 of 

the 95 post-assessment questions were solved mentally, without students using realia, 

manipulatives, or schematic representations, while only nine total pre-assessment 

problems were solved using strategies in students’ heads.  Student 1 demonstrated a 

mental solution strategy when solving Post-assessment Question 5 (Connie has 13 

marbles.  She has five more marbles than Juan.  How many marbles does Juan have?) by 

saying, “Eight.  First I tried doing 13 but I couldn’t.  I tried five and counted on to 13 and 

I got eight in my head.”  Six other students also used a mental strategy for this problem.  

Student 14’s strategy was interesting and showed a deeper level of visualization.  Student 

14 said, “Eight.  First I put 13 in a row in my brain.  Then I put a line after five and 

counted the rest.  It was eight.”  Student 19 showed knowledge of Recalled Facts when 
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stating, “Five.  Five.  She has eight more than Juan!”  This student went on to justify the 

answer by stating, “Juan has eight more marbles.  8 + 5 = 13.”  Solving assessment 

problems using Number Facts was used extensively when the number facts were below 

10 and involved facts students have been working with since kindergarten.  Assessment 

Question 2 was solved by 14 out of the 19 participants by using a Number Facts strategy, 

generally Recalled Fact, with the students saying something similar to, “I know that 3 + 5 

= 8.”  Additionally, nine problems on the post-assessment used fact families, a variation 

of the Derived Facts strategy subset, to aid in solving subtraction number sentences, as 

opposed to only two problems having been solved using fact families on the pre-

assessment.  Student 9 solved Post-assessment Problem 4 (Some birds were sitting on a 

wire.  Three birds flew away.  There were eight birds still sitting on the wire.  How many 

birds were sitting on the wire before the three birds flew away?) by first writing ? - 3 = 8 

and then writing 11 - 3 = 8.  When asked how this student solved this problem, the 

response was, “I know 8 + 3 in my head.  It leaved [sic] me with 11.  My answer is 11.”   

On the pre-assessment students favored using realia to any other mode of problem 

solving.  Fifty-seven of the 95 total problems solved during the pre-assessment were 

solved in part by using realia.  This is opposed to only 14 of the post-assessment 

problems using realia in their solution strategy.  On the pre-assessment, 12 out of the 19 

answers on Problem 1 were solved using realia, 10 out of 19 on Problem 2, 10 out of 19 

on Problem 3, 11 out of 19 on Problem 4, and 14 out of 19 on Problem 5.  Problem 5, the 

problem comparing two people’s quantities of marbles, had the most students using 

realia.  Only five students solved this problem correctly and three of them used the realia, 

which was marbles.  Student 2 solved it correctly but differently than anyone else tried to 
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solve it.  Student 2 set out 13 marbles in a row.  Then, this student set out more marbles 

in a row below until only the last five in the top row did not have a marble in the row 

below it.  Student 2 made sure the marbles were matched up one-to-one with the marbles 

in the first row.  Then this student said, “This one is a hard one,” and touched and 

counted the eight marbles in the bottom row.  Student 2 then said the answer, “Eight.”  

The other students who used realia to help solve this problem tried to use Joining To, 

Separating From, or guessing as their strategy. 

 The final assertion I pose after examining the difference in pre- and post-

assessment data is that when students checked over their work by evaluating the 

reasonableness of an answer, by recounting objects physically or mentally, or by doing 

the problem in two different ways, such as when students used a number sentence to 

check answers as stated earlier, they generally find the error they have inadvertently 

made.  On the post-assessment, students did one of these forms of checking over their 

work on 22 of the 95 possible problems, and no errors remained.  Students checked their 

work using recounting nine times on the post-assessment.  An example of a student using 

recounting to check to make sure no errors were made happened when Student 5 was 

solving Post-assessment Problem 3 (Roger had 13 stickers.  He gave some to Colleen.  

He has four stickers left.  How many stickers did he give to Colleen?).  This student 

counted out 13 stickers, then recounted the set aloud, and then touched and counted the 

set a third time.  Student 6 did a similar recounting checking strategy when solving the 

same problem.  Student 6 counted out 13 stickers mentally.  Then Student 6 touched and 

recounted the set of stickers before proceeding to perform the rest of the actions in the 

problem.  When something did not seem right when solving post-assessment problems, 
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students were able to change strategies.  Student 4 found an error by using multiple 

strategies when solving Post-assessment Question 1 (Robin had four toy cars.  How many 

more toy cars does she need to get for her birthday to have 11 toy cars all together?).  

Student 4 first said, “9 + 2 = 11.  I added 4 + 5 and got 9.  I knew 10 + 2 = 12 so 9 + 2 = 

11.”  Student 4 then picked up a piece of paper and a pencil and drew four squares.  

Student 4 next drew and counted on seven more squares, and then wrote 4 + 7 = 11 toy 

cars.  “Seven,” Student 4 said and changed the solution to this problem, which was the 

correct answer.  Other students besides Student 4 knew that their answers were incorrect 

and after unsuccessfully trying to justify the answers to themselves, they decided to use 

another strategy to solve the problem.  For example, Student 5 answered Post-assessment 

Question 1 (Robin had 4 toy cars.  How many more toy cars does she need to get for her 

birthday to have 11 toy cars all together?) by first saying, “4 + 11 = ?,” and then writing 4 

+ 11 = ?.  Student 5 then drew four circles, and erased the circles.  The student then drew 

four lines and 11 squares.  Student 5 next crossed off three lines and crossed off 10 

squares and wrote 4 + 11 = 2.  Student 5 thought a while longer and then said, “Seven, 

because I know if you have 4 + 7 it equals 11.” 

 Video recorded weekly problem solving observations.  Three dyads were 

recorded weekly to gauge the effectiveness of the innovation, to find how students solve 

mathematical word problems, and to track students’ progress through the problem solving 

hierarchy.  The dyads were selected through rank order purposeful sampling and 

stratified random sampling of the class, showing three different levels of pre-innovation 

problem solving abilities, encompassing a low ability group, a medium ability group, and 

a high ability group.  The weekly video recorded observations varied in length from 59 
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seconds to 4 minutes and 14 seconds.  As Mack, Woodsong, MacQueen, Guest, and 

Namey (2005) suggest, I was able to benefit from participant observations by witnessing 

participants in the setting being studied and was able to get nuanced understandings by 

being with the participants during the event.  This was critical to fully understanding the 

participants’ experiences within the study and to being better equipped to make assertions 

about the study. 

Actions and words of dyads were transcribed verbatim on the Video Recorded 

Observations Form.  I then analyzed these observations and found some similarities and 

differences among dyads and noticeable, noteworthy changes that happened throughout 

the innovation period.  Table 12 shows video recorded observations information, such as 

step in the innovation process, correctness of answer, number of words said, and length 

of observation, broken down by dyad.   

 
Table 12 

Video Recorded Dyads Observations Data Chart 

 
Dyad Correctness 

Words Said 
by Dyad Length 

 
Phase 1, Day 3 

 
Low 

 
No 

 
  80 

 
3 min. 04 sec. 

Compare, Difference Unknown Medium Yes   51 1 min. 33 sec. 
 High Yes   94 1 min. 36 sec. 
 
Phase 1, Day 8 

 
Low 

 
No 

 
120 

 
3 min. 15 sec. 

Part-part-whole, Part Unknown Medium No 144 4 min. 47 sec. 
 High Yes 181 3 min. 07 sec. 
 
Phase 2, Day 3 

 
Low 

 
Yes 

 
179 

 
4 min. 20 sec. 

Compare, Difference Unknown Medium Yes   60 1 min. 53 sec. 
 High Yes 110 2 min. 05 sec. 
 
Phase 3, Day 3 

 
Low 

 
No 

 
115 

 
2 min. 44 sec. 

Join, Start Unknown Medium Yes 103 1 min. 45 sec. 
 High Yes 107 2 min. 43 sec. 
(table continues) 
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Dyad Correctness 

Words Said 
by Dyad Length 

 
Phase 3, Day 8 

 
Low 

 
Yes 

 
  71 

 
1 min. 58 sec. 

Compare, Referent Unknown Medium Yes 102 3 min. 21 sec. 

 High Yes 181 3 min. 13 sec. 

 
Phase 4, Day 2 

 
Low 

 
Yes 

 
204 

 
3 min. 10 sec. 

Separate, Change Unknown Medium Yes 173 3 min. 01 sec. 
 High Yes 122 2 min. 25 sec. 
 
Phase 5, Day 2 

 
Low 

 
Yes 

 
  55 

 
0 min. 59 sec. 

Separate, Results Unknown Medium Yes   58 1 min. 14 sec. 
 High Yes   92 2 min. 21 sec. 
 
Phase 5, Day 7 

 
Low 

 
Yes 

 
100 

 
1 min. 39 sec. 

Join, Change Unknown Medium Yes 116 1 min. 53 sec. 
 High Yes 117 2 min. 06 sec. 
 
Phase 6, Day 2 

 
Low 

 
Yes 

 
163 

 
2 min. 36 sec. 

Separate, Start Unknown Medium No 127 2 min. 36 sec. 
 High Yes 175 2 min. 33 sec. 
 
Phase 6, Day 5 

 
Low 

 
Yes 

 
  71 

 
1 min. 37 sec. 

Join, Start Unknown Medium Yes 167 2 min. 44 sec. 
 High Yes 187 3 min. 35 sec. 
 
Phase 7, Day 5 

 
Low 

 
No 

 
  97 

 
4 min. 14 sec. 

Part-part-whole, Part Unknown Medium Yes   75 1 min. 30 sec. 
 High Yes 114 3 min. 47 sec. 
 
Phase 7, Day 10 

 
Low 

 
No 

 
  56 

 
1 min. 43 sec. 

Separate, Start Unknown Medium Yes 147 3 min. 02 sec. 
 High Yes   78 1 min. 48 sec. 
 
Phase 7, Day 15 

 
Low 

 
No 

 
  47 

 
2 min. 03 sec. 

Compare, Compare Quantity Unknown Medium No   79  1 min. 17 sec. 
 High Yes   33 1 min. 00 sec. 
 
 
 Site-based interpretive research techniques, like the video recorded observations 

used in this study, are specifically beneficial in demonstrating what happens at one 

particular place, rather than across many places (Erickson, 1986).  This type of fieldwork 

can describe the social action that is happening in the study (Erickson, Florio, & 

Buschman, 1980) and can be reported effectively though analytic narrative vignettes.  

Narrative vignettes allow the reader the vantage point of almost being in the research 
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setting because well-written vignettes personify the analytical concepts and create a basis 

for readers to understand and believe what is being portrayed.  Narrative vignettes are 

best created when the researcher is extremely thorough in noticing events in the study 

setting.  Reflective descriptions in the form of vignettes can be effective in showing the 

everyday actions of the setting, as well as describing the major events that happened, and 

can be done from the viewpoint of the participants, the researcher, or an observer (Ely, 

Vinz, Downing, & Anzul, 1997; Erickson, 1986).   

Vignettes encapsulate what the researcher has found in a digestible bite for the 

reader (Ely et al., 1997).  Minor events are minimized or negated from the vignette, as to 

not muddy the waters and detract from the focus of the data transmission through the 

vignette.  Vignettes are characterized as being easy to read and an effective way of 

portraying pages of field notes or narrative data.  Contrary to some researchers’ previous 

beliefs about vignettes as an untrustworthy instrument, when vignettes are built from 

deliberate analysis and facts, then they are trustworthy (Spalding & Phillips, 2007).  The 

major drawback of vignettes occurs when the researcher does not portray a balanced 

description of what happened in the setting, or dwells on outlying situations (Erickson, 

1986).  Through careful qualitative analysis of the video recorded observation data, I 

have created descriptions of how students at three different levels would typically solve 

word problems.  These vignettes portray a balanced, focused, and well-rounded depiction 

of daily problem solving throughout the study.  The vignettes occur on two different days 

in this study.  First, I will describe what would likely be seen from a low ability dyad, a 

medium ability dyad, and a high ability dyad when working to solve a CGI-style word 

problem during the students-at-work phase of the daily problem solving process at the 
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beginning of the study.  The problem the students will be working on takes place on the 

13th day of the innovation, during Phase 2 on Day 3.  The problem posed to students will 

be a Compare, Difference Unknown type problem.  It is stated as, “Emma has eight 

blueberries and five grapes.  How many more blueberries does Emma have than grapes?”  

Then, I will share a vignette that portrays a dyad in this study solving a Compare, 

Compare Quantity Unknown problem.  This vignette will take place on the final day of 

the innovation, Day 60, which occurs in Phase 7 on Day 15.  This problem is stated as 

“Peter has seven seashells.  His friend Olivia has three more shells than Peter does.  How 

many seashells does Olivia have?”  Only one vignette will be used to portray typical 

problem solving behaviors of dyads for this problem because problem solving behaviors 

among video recorded dyads proved to be very similar at the end of the innovation 

period. 

Vignette:  Low ability dyad, Day 13 of innovation.  Two lower ability students, 

Megan and Natalie, sit side by side at two desks.  Before them are a small pile of 

blueberries and a small pile of grapes.  Additionally, the dyad has a resealable baggie 

filled with colored unifix cubes at the top of Natalie’s desk.  Each girl has her pencil and 

answer recording slip.  The day’s problem has been read by the teacher and is posted on 

chart paper hanging on the whiteboard.  Both students read the problem in unison, 

“Emma has eight blueberries and five grapes.  How many more blueberries does Emma 

have than grapes?”  Both girls sit for 15 seconds and look around.  Megan laughs 

nervously.  Natalie picks up a handful of the blueberries and starts counting them out 

loud.  Megan sees Natalie doing this and starts picking up blueberries and handing them 

to Natalie.  Natalie counts out 14 blueberries.  Megan then starts counting the grapes out 
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loud and finds that they have 10.  “Ten,” Megan says as she tosses them down on the 

desk.  Both girls look back up at the problem.  Natalie says, “Emma has eight 

blueberries,” and pauses.  She continues by saying, “We need to get eight blueberries.”  

Megan picks up blueberries and starts counting them one at a time, “1, 2, 3, 4, 5, 6, 7, 8.”  

“Stop!” Natalie yells.  “We don’t need all of them.”  “Why don’t we need all of them?  

We used all of them yesterday,” Megan asked.  “We don’t need all of them because the 

problem says that she only has eight.  We did it wrong yesterday.  Remember?” Natalie 

explains.  “Oh yeah,” Megan says quietly, not sure if she truly understands.  Natalie picks 

up the grapes and reads the problem off the board, “Emma has eight blueberries and five 

grapes.”  Natalie begins counting, “One, two, three.”  Megan joins in and both girls 

continue to count, “Four, five.”  “Stop,” Natalie says.  Natalie moves the extra 

blueberries and grapes to the empty desk next to them.  Both girls sit and look at the 

problem on the chart paper for 20 more seconds.  Megan begins to read the problem 

again, “Emma has eight blueberries and five grapes.  How many more blueberries does 

Emma have than grapes?”  The girls wait silently five more seconds.  Megan says, “Let’s 

count them altogether.”  “Okay,” Natalie agrees.  Megan picks up the grapes and begins 

counting them out loud to herself.  At the same time Natalie picks up the blueberries and 

counts them aloud to herself.  Megan says, “Five.”  Natalie says, “Eight.”  Both girls sit 

for another 10 seconds not saying or doing anything.  Then Natalie picks up the 

blueberries and counts, “1, 2, 3, 4, 5, 6, 7, 8.”  She then picks up the grapes and continues 

counting.  This time Megan counts with her, “9, 10, 11, 12, 13.”  Megan says, “13 more.  

Let’s write it down.”  Both girls pick up their Answer Recording Slips and pencils and 

write 13 in the answer blank.  Each girl’s Answer Recording Slip says “Emma has 13 
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more blueberries than grapes.”  Natalie says, “Let’s do this using our cubes.  I’ll take out 

eight blue cubes and you take out the grapes.”  Natalie takes out eight blue cubes from 

the resealable bag and puts them in front of her.  Megan took out five green cubes and put 

them in front of her.  Both girls sit quietly for 5 seconds.  The classroom is getting quiet 

at this time because all other groups are finished and students have returned to their seats 

and are silently reading, waiting for the other groups to finish.  “Who wants to be the 

grapes?” Megan asks.  “You be the grapes and I’ll be the blueberries if we have to share 

our answer.”  Both girls get up and turn in their Answer Recording Slips.  They return to 

their seats just as an MKO dyad is called to the document camera to share their solution 

strategy.  This dyad spent 4 minutes and 5 seconds solving the problem and said 182 

words during the students-at-work phase. 

 Vignette:  Medium ability dyad, Day 13 of innovation.  Two medium ability 

students, Andre and Sergio, sit side by side at two desks.  In front of them are two 

Answer Recording Slips, one pencil, and a resealable bag of unifix cubes.  There is a 

small pile of blueberries on Andre’s desk and a small pile of grapes on Sergio’s desk.  

Andre reads the problem written on the chart paper hanging on the white board at the 

front of the classroom.  He reads the whole problem, “Emma has eight blueberries and 

five grapes.  How many more blueberries does Emma have than grapes?”  “We need to 

buddy them up,” Sergio suggests.  “Are you sure we buddy them?” Andre asks.  “Yes, 

because we need to know how many more,” Sergio replies.  “You do the grapes and I’ll 

do the blueberries.”  “Okay,” Sergio says as he begins to line up grapes in a neat line 

across Andre’s desk.  Andre begins trying to lay out eight blueberries in a row above 

where Sergio is laying out the grapes, but their hands get in each other’s way.  Andre 
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waits until Sergio gets done, then makes a neat row of eight blueberries above Sergio’s 

five grapes.  Andre says, “Now let’s buddy them.”  Sergio takes his pencil and puts it on 

top of a set of one blueberry and one grape.  Then he says, “Buddy.”  He moves the 

pencil to the next set and both boys say, “Buddy.”  They continue in the same fashion for 

three more sets of blueberries and grapes.  Then there are three blueberries that have no 

matches.  Andre says, “We have to count these.  One, two, three,” as he touches and 

counts the three blueberries.  “Let me do it too.  One, two, three,” Sergio says.  “Three 

more blueberries,” Andre reaffirms.  “Let’s write it down.”  Both boys pick up their 

Answer Recording Slips.  Sergio doesn’t have his pencil and has to wait while Andre 

writes down his answer.  “Can I borrow your pencil?” Sergio asks.  Andre hands him his 

pencil and Sergio writes down his answer.  “Who do you want to be?” Andre asks Sergio.  

“You be Emma,” Sergio says, “and I’ll hand you the blueberries and grapes.”  “Okay,” 

says Andre.  “Let’s pretend.  I’m Emma.  Give me the blueberries and grapes,” Andre 

says.  Sergio hands Andre eight blue unifix cubes and five red unifix cubes.  Andre 

silently lines them up in two neat rows.  He then says, “Buddies, buddies, buddies, 

buddies, buddies,” as he points to the pairs of blueberries and grapes.  “Okay, we’re 

done,” Andre says.  “Mrs. Spilde, can we eat the blueberries and grapes?” Sergio asks his 

teacher.  Both boys get up and turn in their Answer Recording Slips and sit back down, 

take out their library books, and read silently.  Total problem solving time is 1 minute 55 

seconds with 113 words being said during the students-at-work phase. 

 Vignette:  High ability dyad, Day 13 of innovation.  Two high ability students, 

Annie and Zach, sit at desks next to each other.  On Zach’s desk is a pile of blueberries 

and a pile of grapes.  On Annie’s desk there are two Answer Recording Slips, two 
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pencils, and a resealable baggie of unifix cubes.  “Okay, okay, let’s read this,” Zach says 

frantically.  Both students loudly start reading, “Emma has eight blueberries and five 

grapes.  How many more blueberries does Emma have than grapes?”  “Okay, let’s put 

them out,” Zach says.  He starts laying out eight blueberries.  “I’m going to be Emma, so 

give them to me,” Annie declares.  Zach says, “Okay, lay them out,” as he hands Annie 

the blueberries.  “1, 2, 3, 4, 5, 6, 7, 8, 9,” Zach says.  “No wait, it’s supposed to be eight,” 

Annie says.  “Oh yeah,” Zach says, agreeing that his partner caught his mistake.  “Let’s 

count them again to be sure.  1, 2, 3, 4, 5, 6, 7, 8.  Now put these in a neat row,” Annie 

says.  “Now here are the grapes.  1, 2, 3, 4, 5,” Zach says as he hands the grapes to Annie 

one at a time.  Annie lays them in a row below the blueberries.  “Okay it says how many 

more blueberries than grapes does Emma have,” Zach says.  “So let’s buddy them,” 

Annie says quickly and loudly.  “Buddy, buddy,” Zach says as he points to the first two 

pairs of one blueberry and one grape.  Annie joins in and both students say, “Buddy, 

buddy, buddy.”  “Okay, there’re three left,” Zach says.  “Emma has three more 

blueberries than grapes.  Ha!  You have three more blueberries than grapes,” Zach says.  

“Okay, now let’s do it with the cubes,” Annie says.  Both students work to lay out the 

unifix cubes in the same fashion as the blueberries and grapes.  Zach lays out eight green 

unifix cubes and Annie lays out the five red unifix cubes without saying anything.  

“Who’s going to talk?” Zach asks.  “I will,” Annie says.  “Let’s both talk,” Zach says, 

referring to if they are chosen to be the MKOs for the day and get to share their solution 

strategy with the class.  “Let’s put our stuff away so we can be first,” Zach says.  “Can 

we eat these?” Annie asks Zach.  “Mrs. Spilde said after we are done with the problem 

solving then we can,” Zach said.  Both students put their Answer Recording Slips on the 
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table and return to their seats and begin reading.  “Mrs. Spilde, can we share our 

answer?” Annie asks her teacher.  This dyad completed the students-at-work phase in 2 

minutes and 1 second and 144 words were used when working together to solve the 

problem.   

Vignette:  Typical dyad, Day 60 of innovation.  A typical dyad, Jesus and Lacey, 

sits side by side in the classroom.  The teacher has read the day’s problem, the class has 

restated the question, and dyads have spread out throughout the classroom.  Both partners 

have their Problem Solving Journal in front of them and a pencil in their hand.  “Okay, 

the problem says, Peter has seven seashells.  His friend Olivia has three more shells than 

Peter.  How many seashells does Olivia have?” Jesus reads to his partner, Lacey.  Lacey 

says, “Okay, it says more so we have to subtract.”  Jesus starts writing in his Problem 

Solving Journal and says, “We have to add because she has more.”  He writes 7 + 3 = 10.  

Jesus says, “10,” and writes 10 in the answer blank.  He then writes 7 + 3 = ? above the 

number sentence 7 + 3 = 10 he wrote previously.  At the same time, Lacey says, “10 – 3 

= 7,” and writes it on the line labeled Number sentence in her Problem Solving Journal.  

She then writes 10 on the answer blank line and writes the equation ? – 3 = 7 above the 

10 – 3 = 7 number sentence she previously wrote.  Lacey says, “I got ten.”  Jesus looks 

up and says, “I got ten.”  Both students continue looking at their own paper for about five 

more seconds and then Lacey says, “We’re done,” and closes her Problem Solving 

Journal and gets her library book out of her desk and reads.  Jesus says, “Mrs. Spilde, can 

we share today?”  The problem solving process took 58 seconds and the dyad said 54 

words during the students-at-work phase. 
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Table 13 shows the dyads’ highlighted problem solving traits portrayed in the 

previous problem solving vignettes.   

 
Table 13 

Problem Solving Traits by Dyad 

Beginning of Innovation 
Phase 2, Day 3 

Dyad                                         Problem Solving Traits 
 
Low 

 
Spends periods of time sitting, not knowing what to do. 
Counts things together, handing realia and unifix cubes to partner. 
Relies mainly on adding, always uses Joining All strategy subset. 
Recognizes they only need the number of realia the problem stated. 
Still generally solves the problems incorrectly. 

 
Medium 

 
Shares information and strategies with each other, including reasoning. 
Divides up jobs to act out problems. 
Interacts with each other to solve problem. 
Asks questions about the problem to each other. 
Sits and looks around when they don’t know what to do. 
Double checks their work. 

 
High 

 
Checks their actions with the words in the problem. 
Checks each other’s actions and fixes if needed. 
Hands realia to each other to get the total needed for the problem. 
Corrects each other’s mistakes. 
Double checks their work. 

(table continues) 
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End of the Innovation 
Phase 7, Day 15 

Dyad                                         Problem Solving Traits 
 
Low 

 
Uses a ? for the unknown. 
Doesn’t always agree on answer but doesn’t talk about different answers. 
Says answer before writing the equation with the variable. 
Changes operation based on partner’s work. 
Says number sentence right after reading the problem. 

 
Medium 

 
Talks through problem by putting it into math language/equation. 
Uses number sentence that doesn’t exactly match actions of the problem. 
Checks over work by trying different numbers to see if answer is correct. 
Has discussion about answer. 
Writes equation with variable as last step, after number sentence written. 

 
High 

 
Changes number sentence to make it match the actions in the problem. 
Verbalizes number sentence and action in the problem. 
Checks reasonableness of the answer. 
Writes different number sentences but both worked. 
Solves problem independently. 

  
  

The quantitative and qualitative data analyzed in this chapter will be used to 

create and warrant assertions and will be triangulated to provide information pertaining to 

the research questions guiding this study and create an overall picture of the findings of 

this study in the next chapter. 
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CHAPTER 5 

FINDINGS 

This study employed a concurrent component design, in that qualitative and 

quantitative data were collected throughout the study, remained separate through the 

collection and analysis process, and were not mixed until the interpretation and inference 

phases (Caracelli & Greene, 1997; Teddlie & Tashakkori, 2006).  Through concurrent 

triangulation during the interpretation and inference phases, research methods were 

mixed and assertions were made and subsequently warranted (Creswell, 2009).  

Triangulation allowed for all data to weigh in on the same research topic–in the case of 

this study, the way students solve CGI-style mathematics word problems and the effect of 

the innovation–, as well as convergence in data to be sought, and reductions of study 

biases (Mathison, 1998).  As an analyst, I brought my own biases, beliefs, thoughts, and 

experiences to the data analysis process, which is not necessarily a liability or an asset, 

but merely something that I acknowledged and was aware of when completing my 

written analysis (Corbin & Strauss, 2008).  As suggested by Woolley (2009), by keeping 

an open mind to if the findings converged or diverged, and not being swayed by bias, I 

was able to develop a fuller use of the mixed methods framework that allowed for richer 

findings.   

Procedures for Mixing Methods 

Erickson’s modified method of analytic induction was used to merge the 

quantitative and qualitative data in this study (Erickson, 1986).  With the mixed methods 

purpose being triangulation, all data sources were weighted equally and were equally 

influential in the assertion process.  All of the data and findings were read through, 
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including traits and themes from the qualitative data, the Pre- and Post-assessment 

Student Answer Correctness Chart, the Daily Problem Solving Answer Chart, the Student 

Answer Solution Strategy Chart, the Video Recorded Observation Dyads Transcription 

Data Chart, t-test results, students’ verbal and non-verbal solution steps from the pre-

assessment and the post-assessment, and Video Recorded Observation Protocol 

transcription.  Then the data were read through again, focusing on the interplay between 

the qualitative data assertions and themes and the quantitative data results.  Sticky notes 

were used to record ideas, tentative assertions, and relationships among the data sources.  

Recording memos was an important strategy for keeping track of thoughts and ideas that 

were constructed from the data (Creswell, 2009; Johnson & Christensen, 2004).  From 

these memos, a set of credible assertions was created based on ideas that were 

commonplace throughout the data.  These tentative assertions were written as bullet 

points.  A warranting process was conducted for each assertion by finding confirming and 

disconfirming evidence in the qualitative and quantitative data, acknowledging that 

warranted assertions are more reliable if confirming evidence comes from multiple data 

sources (Erickson, 1986).  The goal of this process was not to prove what happened, but 

rather to show generalizable patterns within the data (Campbell, 1978).  Genuine 

integration was desired in this study so counterpart analysis was necessary for addressing 

Research Question 2.  This involved using both types of data to explore the same 

relationship between variables in the question, and was possible because I collected 

multiple data sources from the same instrument, my pre- and post-assessment (Yin, 

2006).  Based on the evidence found, unwarranted assertions were cast out or altered and 

credible final assertions were written.  A presentation of the evidence was built to 
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validate the assertions and is presented here.  The study’s research questions will be 

addressed after. 

Warranted Assertions 

 Data were examined from several angles, starting from the general and working 

toward the specific (Creswell, 2009).  Using Erickson’s modified method of analytic 

induction, quantitative and qualitative data were combined to create assertions, which I 

subsequently warranted.  During this process, I looked for confirming and disconfirming 

events and reported on both to test the evidentiary warrants for my assertions, as well as 

key linkages so that strong bonds were made between data sources and events occurring 

in the study (Erickson, 1986). 

 Assertion 1:  Students’ problem solving abilities increased from participating 

in daily CGI-style word problem solving through guided incremental steps.  As 

stated earlier, this study defines problem solving abilities as the accuracy of solutions, the 

speed at which problems are solved, the solution strategy used to solve the problem, the 

understanding of the problem, and the understanding of the solution strategy.  Evidence 

used to warrant this assertion combines quantitative pre-assessment and post-assessment 

data, quantitative daily answer correctness data, quantitative daily solution length, 

qualitative pre-assessment and post-assessment data, and qualitative video recorded 

dyads data.  

 Correctness of student answers on pre-assessment to post-assessment.  All 19 

students who participated in this study increased the number of problems they solved 

correctly on the post-assessment as compared to their pre-assessment scores.  Increases 

ranged from 20.00% to 100.00%, with three participants increasing their score 20.00%, 
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three increasing their score 40.00%, six increasing their score 60.00%, two increasing 

their score 80.00%, and five increasing their score 100.00%.  These increases were 

statistically significant (p < .001).  The mean pre-assessment score was 33.68% correct, 

whereas the mean post-assessment score was 96.84% correct, an increase of 63.16% from 

the pre- to post-.  A paired-samples t-test indicated that this increase in student problem 

solving performance can be associated with the innovation rather than occurring by 

chance.   

 Correctness of student answers on first third of daily problem solving compared 

to last third of daily problem solving problems.  The average percent correct on the first 

20 daily problem solving questions was 75.01% and the average percent correct on the 

last 20 daily problem solving questions was 85.34%.  This was an increase of 10.33%, 

which was found to be statistically significant (p < .001).  This result shows that the 

increase in student daily problem solving correctness can be associated with the 

innovation rather than occurring by chance.   

 Time spent solving daily problems by dyads at beginning compared to end of 

innovation.  The amount of time spent solving daily word problems decreased overall 

throughout the innovation implementation period.  A comparison was made between the 

mean students-at-work length during Phase 1 at the beginning of the innovation with the 

mean students-at-work length during Phase 7 at the end of the innovation.  A Phase 1 

problem took an average of 2 minutes and 54 seconds to solve and a Phase 7 problem 

took 2 minutes and 16 seconds.  This was a decrease in time spent solving problems of 38 

seconds, 21.84%.  Though this difference was not statistically significant, it shows an 

improvement in the efficiency of students’ problem solving process.     



 

 
 

119

 Higher level solution strategies used on post-assessment than pre-assessment.  

Overall, the solution strategies students used to solve questions on the post-assessment 

were at a higher level of complexity than the solution strategies students employed on the 

pre-assessment.  From the pre-assessment to the post-assessment, there was a decrease 

from 8.42% to 0.00% of the problems being solved by no solution strategy or a guess, a 

decrease from 73.68% to 37.89% in the problems being solved by a Direct Modeling 

strategy, an increase from 6.32% to 15.79% in problems being solved by a Counting 

strategy, and an increase from 11.58% to 46.32% in the problems being solved by a 

Number Facts strategy.  This shows an overall shift from the use of lower level solution 

strategies to an increased use of higher level solution strategies.  In fact, Direct Modeling 

was stated as one of the most common solution strategies used on all five of the pre-

assessment questions, whereas Number Facts was stated as one of the most common 

solution strategies on the post-assessment for four out of the five questions.  Additionally, 

when solution strategy subsets were inspected, the same trend held true.  The greatest 

decrease in solution strategy subset usage from the pre-assessment to the post-assessment 

was in Direct Modeling, Separating From, which showed a decreased in occurrence of 

10.52%.  The greatest increase was in Number Facts, Recalled Fact, which showed a gain 

in occurrence of 27.37%. 

 Guessing immediately on pre-assessment versus post-assessment.  Students on 

the pre-assessment guessed almost immediately on 8.42% of the problems.  This was 

eight out of the 95 total answers students gave.  On the post-assessment, no student gave 

an immediate guess answer.  This was a decrease of 100.00% in the number of guesses.  

For example, Student 3 showed development in effort put into answers.  Student 3 
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answered Pre-assessment Question 3 (Roger had 13 stickers.  He gave some to Colleen.  

He has four stickers left.  How many stickers did he give to Colleen?) by guessing and 

nearly immediately saying, “Twelve.  I remembered it from the story.”  Then on the post-

assessment, Student 3 answered the same question by counting out 13 stickers aloud, 

moving away nine stickers, counting one-by-one until four stickers were left in the pile, 

and then saying the answer, “Nine.”   

 Understanding of parts of equations.  As previously illustrated in the differences 

between the pre- and post-assessment themes, students used number sentences often 

when describing their post-assessment solution strategies.  All 53 times a student stated a 

number sentence on the post-assessment, it was associated with a correct answer.  On the 

pre-assessment, number sentences were only stated 11 times, and four times they lead to 

an incorrect solution.  Additionally, students identified the incorrect part of the number 

sentence or the incorrect portion of the manipulatives, realia, or schematic representation 

in 11 of the problems on the pre-assessment.  An example of this was when Student 4 

wrote the correct number sentence 3 + 5 = 8 for Pre-assessment Question 2 (Deborah had 

some books.  She went to the library and got three more books.  Now she has eight books 

altogether.  How many books did she start with?), but then identified the 8 as the answer, 

when the addend 5 was the correct answer in this Join, Start Unknown problem.   

Students made these types of errors zero times on the post-assessment.  

 Threats to validity.  Validity must be considered when warranting an assertion.  

Two threats to internal validity, history and maturity, could possibly be factors affecting 

students’ problem solving abilities, and therefore this assertion.  First, when designing 

this study and writing additional lesson plans not associated with this project, I 
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considered the effect of development that normally occurs in my second grade classroom.  

Because of this, I used this daily problem innovation as my students’ primary form of 

mathematics problem solving instruction.  Additional problem solving questions were 

kept to a minimum and to topics other than the basic addition and subtraction CGI-style 

word problems that were the focus of this study.  When considering the effects of normal 

maturation, the students in this study far surpassed the problem solving abilities of 

previous students at this point in the school year.  This was seen in the pilot of the pre-

/post-assessment that took place in the Spring of 2012.  The students in this study 

outscored the students who piloted the assessment but who did not receive the innovation. 

 Assertion 2:  Students internalized the solution strategy process by 

participating in this innovation.  Effective problem solvers can unpack a problem and 

visualize its steps (Hegarty et al., 1995).  Internalization of the solution strategy can be 

seen by students solving the problem in their head or using fewer aides, such as realia, to 

solve the problem (Montague, n.d.).  Evidence to warrant this assertion includes the 

increase in the use of the Number Facts strategy, decrease in the prevalence of lower 

complexity solution strategies, a reduction in the reliance on the aide of realia to solve 

problems, an increase in the immediacy of answers, and the increase in the necessity of 

probing questions to elicit students’ solution strategies. 

 Number Facts usage increased on post-assessment.  When solving the post-

assessment, students tended to state a number sentence along with their answer.  This 

occurred 53 times on the post-assessment.  In comparison, on the pre-assessment only 11 

students stated a number sentence.  As found in the paired-samples t-test results stated 

earlier, the shift from simpler to more complex solution strategies from the pre-
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assessment to the post-assessment was statistically significant.  Highlights of these 

findings were that the Direct Modeling strategy subsets were used in 73.68% of the pre-

assessment solutions but only 37.89% of the post-assessment strategies.  This was a 

decrease of 35.79%.  On the other hand, Number Facts strategy subsets were used 

11.58% on the pre-assessment and in 46.32% of the answers on the post-assessment.  

This was an increase of 34.74%.  In fact, Number Facts, Recalled Fact was one of the 

most common solution strategy subsets used on all post-assessment questions, whereas, 

Direct Modeling strategy subsets were one of the most common solution strategies on 

each of the pre-assessment questions.  Additionally, the use of fact families, a derivation 

of Number Facts, Derived Fact, was seen nine times on the post-assessment, and only 

twice on the pre-assessment.  

 Less use of realia on post-assessment.  As discussed earlier, the solution strategy 

and strategy subset used by students on the pre-assessment and post-assessment changed 

due to this innovation.  The use of realia can be associated with lower level solution 

strategies, such as Direct Modeling and Counting strategies and their strategy subsets. 

This innovation was designed to introduce problem solving through the use of realia to 

build understanding in the actions and operations needed to solve problems more 

efficiently in the future.  The innovation plan was designed to gradually decrease the use 

of and dependence on realia to solve problems, but maintain understanding when solving 

problems in more complex manners.  This plan proved successful.  On the pre-

assessment, students used realia to aide in solving a problem 57 times.  On the post-

assessment, this number had dropped to 14 times throughout the entire assessment.  

Additionally, the Direct Modeling strategies associated with the use of realia decreased a 
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statistically significant amount.  For example, Student 17 solved Pre-assessment Question 

3 (Roger had 13 stickers.  He gave some to Colleen.  He has four stickers left.  How 

many stickers did he give to Colleen?) using realia by first counting out a set of 13 

stickers, then setting four to the side, and finally counting the pile left one-by-one.  This 

same student solved Question 3 on the post-assessment using a Number Facts strategy by 

saying, “Nine.  Cuz [sic] 13 - 9 = 4.”  Student 12 showed an alternative way to solve this 

problem using visualization.  This student imagined 13 stickers and then mentally took 

away four of them and came to the correct answer.  On the pre-assessment this student 

solved the same problem using a Counting strategy.        

 Said answer immediately.  A difference in the ease with which students came to 

answers could be seen when comparing the pre-assessment to the post-assessment.  On 

the post-assessment students tended to give a correct answer nearly immediately after the 

problem was stated.  On the post-assessment students stated the correct answer 

immediately 24 times, whereas on the pre-assessment, students stated an answer 

immediately 13 times, but only five of these immediate answers were correct.  The rest 

were immediate guesses.  

Shared thinking when questioned on post-assessment.  Students tended to talk 

equally during the pre-assessment and post-assessment, but the way students explained 

their solutions varied by assessment.  Students tended to explain how they solved a 

problem in real-time, while they were figuring out their answers, more often when the 

problem was not solved mentally.  Conversely, students tended to need prompting on the 

post-assessment to explain how they solved the problem.  This was accomplished by 

asking students to explain how they solved the problem after the answer was given.  This 
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coincides with earlier findings that students more commonly gave an immediate answer 

when solving problems on the post-assessment than on the pre-assessment, and their 

solution strategy complexity increased at a significant level from the pre-assessment to 

the post-assessment.  Overall, students needed to be prompted to explain their problem 

solving process 15 times on the pre-assessment and 26 times on the post-assessment. 

Threats to validity.  The experimenter effect, history, and maturation could be 

threats to validity in this study and were considered when warranting this assertion.  First, 

the experimenter effect was countered through the way the pre- and post-assessment data 

collection was designed.  All student actions and words used when solving a problem 

were recorded, along with any clarifying statements about solution strategies that students 

used after the problem had been solved.  Students’ solution strategies and answers were 

transcribed and analyzed after all students had been assessed.  The chance of assessment 

data being skewed by the research method or researcher was minimized by this process.  

Additionally, history and maturity could have played factors in the results, so they were 

considered when designing the study and analyzing data as well.  Students generally gain 

knowledge as the school year progresses, so to encourage students developing their 

mathematics skills without influencing the results of this study, topics other than 

mathematics problem solving were taught during daily mathematics lessons.  Further, the 

use of MKOs and strategy conferences to discuss problem solving strategies were only 

used during the daily innovation time, which limits the idea that additional students 

sharing higher solution strategies attributed to students’ increase in internalization of 

solution processes.   
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 Assertion 3:  Students worked more independently on problems as their 

problem solving abilities increased.  Students worked with their partner when the 

innovation began.  The innovation was designed so that like-ability dyads would begin 

the problem solving process by acting out problems together, building understanding 

through their actions.  Throughout the innovation, the process was designed to continue 

interactions between dyad members, but in a different way.  As the innovation 

progressed, students were not to rely on their partner to help act out problems, but rather 

to share ideas with.  Evidence to warrant this assertion includes the number of words 

dyads said during their students-at-work portion of the lesson, the reduction in problem 

solving session lengths, student problem solving traits, and the increase in correctness of 

daily problem solving questions.    

 Number of words said during daily problem solving students-at-work portion.  

As shown through the vignettes portrayed in Chapter 4, students interacted with each 

other much more during the beginning of the innovation.  During Phase 1 of the 

innovation’s students-at-work phase of the daily problem solving process, the three dyads 

averaged 111.67 words said to each other.  During Phase 7 of the innovation, the average 

number of words dyads said during the students-at-work phase was 80.67 words.  This 

decrease in the number of words said was a sizeable decrease of 27.76%, but a t-test 

showed that the decrease could not confidently be related solely to the innovation 

because the results were not statistically significant.  This finding was likely due to the 

small variance in words said by the medium ability dyad and small sample size.   

 Shorter problem solving times during students-at-work portion.  The dyads’ 

students-at-work portions of the daily problem solving session were recorded once 
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weekly.  It was found that the average length of time students spent solving the problem 

decreased over the course of the innovation.  The mean problem solving length of Phase 

1 of the innovation (2 minutes and 54 seconds) was compared to Phase 7 of the 

innovation (2 minutes and 16 seconds).  Although the findings were not statistically 

significant, likely due to small sample size, they were still notable and of interest.  All 

dyads decreased their average problem solving lengths from Phase 1 to Phase 7, with an 

average decrease of 21.84%.     

Student problem solving traits.  Video recorded observations and the 

transcription of students solving the pre-assessment and post-assessment showed that 

students were able to access problems more readily as the innovation progressed.  As 

stated earlier, students immediately guessed on eight pre-assessment questions, but did 

not immediately state a guess without first trying a strategy on any post-assessment 

questions.  Additionally, video recorded observations showed that all three of the dyads 

readily looked at each other, paused in their problem solving waiting for their partner to 

tell them what to do, and stared around the classroom without working on the problem at 

the beginning of the innovation period.  This non-working period persisted longer into the 

innovation implementation for the lowest ability dyad than the other dyads.  At the end of 

the innovation period, students in all three dyads were attempting to solve problems 

immediately and long periods without working on the problem were not evidenced. 

Correctness of daily problem solving questions.  The correctness of daily 

problem solving answers increased as a result of the innovation.  There was a statistically 

significant increase in the correctness of the last 20 daily problem solving questions as 

compared to the first 20 daily problem solving questions.  During the first third of the 
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innovation, 75.01% of the answers were correct.  During the final third of the innovation, 

85.34% of the answers were correct.  This increase was 10.33% more correct.  Viewing 

these findings alongside the findings of a decrease in problem solving times and number 

of words creates an interesting relationship between correctness, independence, and 

efficiency.   

Threats to validity.  When warranting this assertion, one primary threat to 

validity, the novelty effect, was considered.  Because this innovation was 14 weeks long, 

and students solved a word problem each day, I was aware of the effects I could have on 

students’ overall problem solving process, especially the students-at-work and strategy 

conference portions of the daily problem solving routine.  To ensure my actions did not 

affect results in problem solving independence, I worked to behave in the same manner 

during every day of the innovation.  I strove to provide a relaxed, unrushed classroom 

environment where students felt comfortable to take their time solving problems and had 

plenty of opportunities to share their thinking and ask classmates questions about their 

solution strategies. 

 Assertion 4:  Students checked over work more frequently as a result of 

participation in this innovation.  Students grew in many different and unexpected ways 

by participating in this innovation.  One of those ways was their increase in 

understanding of word problems that led to their propensity to check over their work and 

find errors.  Data used to warrant this assertion includes a comparison of the checking 

actions during the assessments, students’ increase in trying multiple solution strategies, 

and students’ words and actions when solutions were not correct. 
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Found errors on post-assessment more often than pre-assessment.  Students 

increased their problem solving abilities as a result of this innovation, as evidenced 

through a t-test comparing pre-assessment to post-assessment scores.  Part of the increase 

in assessment scores was attributed to students’ ability to identify errors in their solution 

strategies and fix them.  On the pre-assessment, students checked over their work four 

times, but on the post-assessment students checked their work 22 times.  On the pre-

assessment, all students who checked over their work had not made an error.  What is 

more notable about these statistics is that when students employed this checking strategy 

they found all of their errors on the post-assessment.  Recounting of the manipulatives 

used to solve the problem occurred four times in the pre-assessment and nine times on the 

post-assessment. 

 Justified answers with number sentences.  The Number Facts strategy, including 

number sentences, is the highest complexity level that students used to solve problems in 

this study.  Through this innovation, students showed dramatic growth in their use of 

number sentences to justify their answer.  On the pre-assessment, students used number 

sentences 11 times and on the post-assessment students used number sentences 53 times.  

Number sentences were most commonly stated after the answer was given, but they were 

also used as part of the students’ solution strategies when talking through a word 

problem.   

 Knew when answer did not make sense.  Students exhibited their discomfort with 

their incorrect answer when solving problems.  Most commonly, students changed 

solution strategies when they realized that the answer they had given was incorrect and it 

could not be justified.  As an example, one student started solving Post-assessment 



 

 
 

129

Question 3 (Roger had 13 stickers.  He gave some to Colleen.  He has four stickers left.  

How many stickers did he give to Colleen?) and then paused and changed solution 

strategies.  The student first wrote 13 - ? = 4 on a piece of paper.  Then said, “Uh.  6.  I 

thought in my head.”  Next, the student started at 13 and counted backward, saying, “12, 

11, 10, 9, 8, 7,” and put up six fingers and then took away two more.  The student wrote 

13 - 8 = 4, put up fingers, and counted backward eight numbers, “13, 12, 11, 10, 9, 8, 7, 

6, 5.”  The student then drew 13 circles on the paper and counted aloud as they were 

drawn.  Next, the student said, “13 - some = 4,” and proceeded to leave the first four 

circles on the paper and cross off the last 9 circles.  The student then circled the first four 

circles and said, “Nine, I mean.”  This is in comparison to how this student solved the 

same pre-assessment question.  On the pre-assessment, the student counted out a pile of 

13 stickers one-by-one and then recounted the pile one-by-one.  The student then counted 

a separate pile of four stickers one-by-one and finally counted all of the stickers together 

and said, “17.”  This student did not realize that the answer on the pre-assessment was 

wrong and did not make mathematical or logical sense.  On the post-assessment, the 

student persevered until the answer made sense, trying multiple strategies until a correct 

solution was found.  A total of 11 students tried multiple solution strategies on the post-

assessment, and 10 of these 11 students eventually came to the correct solution.   

 Threats to validity.  Validity was considered when warranting this assertion.  Care 

was taken to ensure that the experimenter effect did not influence results in this study, 

because if I, as the researcher and practitioner, changed my affect, words, or tone while a 

student was giving an answer, the student could be clued in to whether that answer was 

correct or not, and this could influence this assertion.  I was aware of this while assessing 
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students, and while I was transcribing data.  I paid close attention to the wording I used 

while asking students to explain their thinking so that all students received the same 

treatment from me regardless of the correctness of their answer.  When reviewing the 

written description on the pre-assessment and post-assessment Student Answer 

Recording Forms, it was evident in the description of student assessment solution 

strategies and answers that this did not impact student answers.    

Research Questions 

 Quantitative data and qualitative data were triangulated to shed light on the two 

research questions that guided this study.  Through triangulation, multiple data sources 

weighed in on one topic, creating a clearer picture of the situation (Gay et al., 2009).  

This triangulated data will be viewed through the theoretical lenses that guided the design 

of the study, including Vygotsky’s social development theory, Bandura’s social learning 

theory, and Piaget’s and Vygotsky’s theories of constructivism.   

 Question 1:  How does a class of second grade students at San Marcos 

Elementary solve Cognitively Guided Instruction-style contextual word problems?   

Quantitative and qualitative findings from the pre-assessment, quantitative and qualitative 

findings from the post-assessment, and quantitative and qualitative findings from the 

video recorded observations were joined to weigh in on this question.  The triangulated 

results from this study showed that students in this class solve CGI-style word problems 

correctly, with understanding at a high complexity level, and cooperatively with 

developed independence. 

As evidenced by the pre- and post-assessment results combined with daily 

problem solving correctness and video recorded dyads’ problem solving times, students 
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in this class showed they preferred to use higher level solution strategies to solve CGI-

style word problems.  Prior to the innovation, students most commonly used Direct 

Modeling strategies to solve mathematics word problems, with 73.68% of all problems 

on the pre-assessment being answered with this lower complexity solution strategy.  Also 

on the pre-assessment, 8.42% of questions were answered when students did not use any 

strategy and immediately guessed on answers, 6.32% of questions were answered using a 

Counting strategy, and 11.58% of questions were answered using a Number Facts 

strategy.  Students were scaffolded through the problem solving hierarchy during this 

innovation and students’ problem solving strategy complexity increased as a result.  On 

the post-assessment, the Number Facts strategy was the most common strategy used, with 

46.32% of questions being answered using this strategy.  This was an increase in the use 

of the Number Facts strategy from the pre-assessment to the post-assessment of 34.73%.  

Additionally, on the post-assessment, students decreased the usage of Direct Modeling 

strategies by 35.79%.  Counting strategies increased from 6.32% usage on the pre-

assessment to 15.79% on the post-assessment, a gain of 9.47%. 

 On the daily problem solving questions, students increased their correctness from 

the beginning of the innovation, where lower complexity solution strategies were used, to 

the end of the innovation, where higher level solution strategies were used to solve daily 

word problems.  When comparing the first 20 daily problem solving questions to the last 

20 daily problem solving questions, there was a statistically significant increase in the 

class’s mean correct between the two sets.  In addition, students’ problem solving times 

decreased throughout the innovation period.  Onslow (1991) states that students who use 
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higher complexity solution strategies to solve word problems generally solve the problem 

more efficiently and quickly.  This coincides with what participants in this study showed. 

 Prior to the innovation, most members of the class were missing the conceptual 

understanding of actions implied by word problems and their related mathematical 

functions.  On the pre-assessment, students showed this lack of understanding by 

guessing at answers (8.42% of answers) and performing the incorrect operations to solve 

problems (14.74% of answers).  These incorrect operations usually took the form of 

number grabbing or subtracting when the problem should have been solved by joining the 

numbers, which coincides with what Peter-Koop (2005) describes as what happens when 

a student does not comprehend the wording of a problem or its mathematical basis.  This 

lack of understanding of the problems led to a pre-assessment class average of 33.68% 

correct.  After the innovation, students showed understanding of the operations and 

actions needed to solve word problems, and used a strategy they felt comfortable with to 

solve the problem, resulting in a class average of 96.84% correct on the post-assessment.  

Though not every student could solve every problem, there was a dramatic increase of 

63.16% from the pre-assessment to post-assessment, as well as the increase in solution 

strategy complexity stated previously.  Both of these increases were statistically 

significant.  Because of this innovation, more students in this class are able to solve more 

problems correctly.  This coincides with the findings of Arzarello et al. (2005) in their 

study involving the use of realia and bodily movements to foster understanding in 

problem solving and increase the problem solving abilities of a group of intermediate 

elementary students. 
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 The flexibility which allowed students to choose which solution strategy to use to 

solve problems on the assessments proved to be beneficial to students’ overall problem 

solving abilities.  The design of the innovation involved dictating the solution strategy 

students could use to solve daily word problems, with an overall increase in complexity 

of strategies students would use over the course of the innovation.  This showed to be an 

effective design element in regards to overall problem solving ability, but an interesting 

result was that students fared better on the post-assessment than they did while solving 

daily word problems.  This was likely because students could use any strategy, realia, or 

manipulative they needed to solve each word problem on the post-assessment.  Whereas, 

on the daily problem solving questions, students were directed as to which strategy they 

could use to solve that problem.  Students scored 96.84% correct on the post-assessment 

and 85.34% correct on the final third of the daily problem solving problems.  This finding 

coincides with what CGI suggests–that students benefit from being allowed the freedom 

to solve a word problem in any way that makes sense to them (Carpenter et al., 1999)–

and what social learning theory demonstrates through its description that students watch 

others and the outcomes they obtain, and then decide what they fully understand and will 

use as their own methods (Bandura, 1977).   

 Students in this study also solved CGI-style word problems with understanding.  

This was evidenced by the words and actions students used to solve the pre- and post-

assessments, video recorded dyads’ words and actions, and video recorded dyads’ 

problem solving times.  As asserted previously, students checked over their work more 

on the post-assessment (22 times) than they did on the pre-assessment (four times), and 

this led to more correct answers, as well as demonstrated that students had an 
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understanding of when their answers were correct or incorrect.  When students were 

confronted with an answer that they could not justify using a number sentence or an 

answer that they did not believe was correct, an additional solution strategy was often 

tried on the post-assessment.  Ten out of the 11 times students tried multiple solution 

strategies, they were able to come to a correct solution.  This showed that students 

understood what they were doing to solve a problem, could use strategies flexibly, and 

understood the reasonableness of their answer when solving CGI-style word problems 

with single-digit and lower two-digit numbers.  Additionally, on the post-assessment, 

more students were able to come to the correct answer immediately, then justify their 

work with an explanation of how they came to that answer or a number sentence that they 

used to solve the problem.  On the pre-assessment, students also described how they 

solved the problem, but this description most commonly was done as students worked 

their way through the problem solving process.  Correct answers were less commonly 

immediately said on the pre-assessment (five times) than on the post-assessment (24 

times). 

 When students worked with their partner, they began by working more 

dependently with their partner, relying on the other’s knowledge to aide in the problem 

solving process, as evidenced in the video recorded observations.  Toward the end of the 

innovation, most dyads were working more independently to solve problems and no 

longer relied as much on their partners’ support to answer questions.  Partners were able 

to solve problems correctly on their own and justify their work, commonly with a number 

sentence or schematic representation.  Video recorded observations also showed that 

students were able to work well with their partner when needed.  They shared their 
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thinking with their partner when they wanted to, which happened more at the beginning 

of the innovation, and solved the problem independently as they became more adept at 

problem solving, which more commonly occurred toward the end of the innovation.  

Students willingly shared their thinking with their partner when asked, and stated their 

answer out loud when solving the problem independently.  When students were confident 

in their answer, they chose not to listen to their partner’s solution and chose their own 

solution as their final answer.  Though the progression of the problem solving strategies 

employed by this innovation may have contributed to this shift in students’ problem 

solving independence, the flexibility demonstrated by students coincides with what many 

other researchers have found in their studies of like-ability versus mixed-ability dyads 

(Denessen et al., 2008; Schmitz & Winskel, 2008; Takako, 2010).  Generally, they found 

that like-ability dyads had the propensity to create greater understanding and skill than 

mixed-ability dyads.  Additionally, students also decreased their problem solving times 

and number of words said during the students-at-work portion of the daily problem 

solving process overall from the beginning of the innovation to the end of the innovation, 

and with understanding comes efficiency and flexibility (Onslow, 1991). 

Students in this classroom not only worked cooperatively with their partner, but 

also worked cooperatively as a class.  A major theoretical focus of this study was 

designed around the benefits of the MKO.  This study was designed to help students 

develop their mathematical understandings by listening to and questioning the MKO 

during the daily strategy conference, a form of scaffolding to help raise students’ ZPDs 

(Vygotsky, 1978).  Each day, a dyad or myself shared a successful, and usually more 

complex solution strategy with the class.  This played a part in many observable 
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advancements in the classroom.  The lowest ability dyad learned that they did not need to 

use all of the realia or manipulatives they were given to answer a question.  On the third 

video recorded observation, this dyad showed for the first time that they understood that 

they only needed to use what the problem said, rather than trying to use all of the items 

they were given to solve the problem.  Growth in this area may not have come without 

modeling by a more capable classmate.  Additionally, the medium ability dyad began 

stating and writing a number sentence to solve each problem in the video recorded 

observations during Phase 4, Day 2.  This was before Phase 6 of the innovation when 

number sentences were to be formally introduced.  This caused other students in the class 

to try to add number sentences to their schematic representations.  The high-ability dyad 

first showed use of a written number sentence on Phase 5, Day 7, the low ability dyad 

first used a written number sentence on Phase 5, Day 2, and the majority of the class was 

including number sentences in their problem solving journals before Phase 6 officially 

began.  Though the effects of the MKO were not directly calculated in this study, its 

effects can still be seen in solution strategies and answer correctness.  The effects of the 

MKO are supported by social development theory and social learning theory.  Evidenced 

in the increase of average percent correct from the beginning third of daily problem 

solving questions to the final third of the problem solving questions, students developed 

their ability to correctly solve mathematics word problems.  Without seeing others solve 

problems, hearing their explanations, and talking about their own mathematical work, it 

is reasonable to assume that problem solving abilities would not have improved a 

significant amount, just as Cloutier and Goldschmid (1978) found.  Students in this class 

watched others and then made up their own understandings, ideas, and beliefs about how 
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to solve different types of CGI-style word problems.  As evidenced throughout the study, 

student participants developed at different rates, and solution complexity was not at the 

highest level for all students at the end of the innovation for all problem types.  Not all 

students used the highest strategy complexity to solve all problems, though many did as a 

result of this innovation, and this overall increase in solution strategy complexity was 

found to be statistically significant.  On the post-assessment, 37.89% of the questions 

were still answered using Direct Modeling, including realia, manipulatives, and drawings, 

but these aides now had meaning for students.  A strong elementary school mathematics 

classroom combines concept developing, quality mathematics activities, student 

conversation, and opportunities for students to build their own understandings of 

mathematical concepts (Carpenter et al., 1999; Kilpatrick & Swafford, 2002; Kline, 2008; 

National Research Council, 1989; NCTM, 2000; Sutton & Krueger, 2002).  Through this 

innovation, students were able to work at their own pace, in like-ability dyads to 

construct meaning within problems (Piaget, 1953; Vygotsky, 1962), and the use of the 

MKO to share solution strategies with the class scaffolded students with lower bottoms to 

their ZPDS (Vygotsky, 1978).      

Question 2:  How and to what extent does partnered Cognitively Guided 

Instruction-style mathematics word problem solving through guided incremental 

steps affect a class of San Marcos second graders’ mathematics problem solving 

abilities?  Quantitative and qualitative findings from the pre-assessment, quantitative and 

qualitative findings from the post-assessment, quantitative findings from daily problem 

solving answers, and quantitative and qualitative findings from the video recorded 

observations will be joined to weigh in on this question.  The triangulated results from 
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this study showed that students in this class increased their problem solving abilities, 

awareness of parts of number sentences, understanding of the reasonableness of answers, 

mental actions in problem solving, efficiency, and efficacy. 

Participation in this study positively impacted students’ problem solving abilities.  

From the pre-assessment to the post-assessment, the class mean correct increased 

63.16%.  This increase was statistically significant so this increase in correctness was 

likely was not attributed to chance but rather to the innovation itself.  Additionally, 

students’ daily problem solving responses increased 10.33% in mean correctness 

throughout the innovation, which was found to be statistically significant using a paired-

samples t-test.  Triangulating this with students’ increase in complexity in problem 

solving solution strategies and decrease in the length of time video recorded dyads took 

to solve problems creates a converged picture of increased problem solving ability that 

can be directly related to the innovation.  This increase was more than would be expected 

through the history effect, because when students piloted the assessment in the Spring of 

2012, students did not score at nearly 100% correct, as they did on the post-assessment in 

this study, even though the primary mathematics instruction for the two groups of 

students was nearly identical.  

 Through participation in this study, student developed an increased awareness of 

the meaning of the parts of number sentences.  On the pre-assessment, students selected 

the wrong part of a number sentence as the answer 11.58% of the time.  By comparing 

this to the post-assessment, where students did not choose the wrong part of the number 

sentence as the answer to the problem any times, growth from participation can be seen.  

Further, students used number sentences to solve problems on the post-assessment and to 
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justify their answers 53 times on the post-assessment.  Understanding of the parts of a 

number sentence and actions indicated by symbols in the number sentence is generally 

necessary to come to a correct solution (Onslow, 1991), especially at the rate that 

students did on this assessment. 

 Students in this study showed an increase in their ability to check over their work 

and answers and in their awareness of the reasonableness of their answers.  This can be 

evidenced through the number of times students checked their work on the pre-

assessment (four times) compared to the number of times work was checked on the post-

assessment (22 times.)  Further, students did not settle for incorrect answers on all but 

three questions on the post-assessment.  When a solution or strategy did not seem to 

make sense to a student or an answer couldn’t be justified, students tried other strategies 

or redid their work until a reasonable solution was found.   

 Students increased their abilities to visualize a problem and use mental strategies 

to solve it through participating in this study.  From the pre-assessment to the post-

assessment, students showed an increase of 34.73% in the usage of the Number Facts 

strategy to solve problems.  There was also a decrease of 35.79% in the number of 

problems solved using a Direct Modeling strategy.  Student 6 demonstrated this decrease 

when the student solved Pre-assessment Question 5 (Connie has 13 marbles.  She has five 

more marbles than Juan.  How many marbles does Juan have?) by using Direct Modeling, 

Joining All and the same question on the post-assessment by Number Facts, Recalled 

Fact.  These changes in class solution strategies were shown to be statistically significant 

using a paired-samples t-test, so with confidence, it can be said that the innovation 

affected this change.  Students also decreased their overall use of realia from 57 times on 
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the pre-assessment to 14 times on the post-assessment.  The study was designed to use 

realia to help build understanding in the words and actions of problems and the problem 

solving process, which it did.  Many students realized that the use of realia was not the 

most efficient way to solve problems and chose not to use it when it was not necessary 

because a more efficient solution strategy was able to be used.  This coincides with 

Englard’s (2010) findings when working with a group of third grade students.  Englard 

transitioned these students through solving problems from concrete, in the form of realia, 

to abstract.  The result was that the students who received this problem solving treatment 

developed their problem solving skills more than a group of students who did not receive 

the treatment.  CGI posits that students should be able to solve problems in the way that 

makes the most sense to them and that problem solving develops through a concrete to 

abstract passage (Carpenter et al., 1999).  Getting students accustomed to reasoning 

abstractly and understanding the meaning of numbers and operations in number sentences 

is important for success with higher level mathematics, especially the Common Core 

State Standards (Common Core State Standards Initiative, 2010; White & Dauksas, 

2012).   

 Overall, problem solving times decreased as a result of this innovation, though not 

at a statistically significant rate.  The average length it took video recorded dyads to solve 

daily problem solving questions in the Phase 1 of the innovation compared to Phase 7 

decreased by 21.84%.  As seen in the video recorded observations, the lowest ability 

dyad spent less time giggling, looking around, and waiting for the other partner to solve 

the problem at the end of the innovation than at the beginning of the innovation.  The 

highest ability dyad solved problems more quickly at the end of the innovation by writing 
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faster and doing work individually then comparing answers by looking at each other’s 

papers or saying the answer to each other. 

 Another way that an increase in efficiency in problem solving was seen in this 

study was the rate at which solutions were given on the post-assessment.  Students 

immediately stated the answer correctly on 24 out of the 95 total solutions given.  They 

then went on to justify their work by describing what they thought about to solve the 

problem or stating the number sentence they used to solve the problem.  Students only 

stated the correct answer immediately on five out of the 95 total pre-assessment 

questions. 

 Through participation in the guided incremental steps of this study, students 

became more independent in their problem solving abilities.  Nearly all dyads used less 

words when working with their partner to solve problems at the end of the innovation as 

compared to the beginning of the innovation.  The mean words spoken during the 

students-at-work portion of the daily problem solving routine decreased 27.76% from 

Phase 1 to Phase 7, highlighted by the high ability dyad whose words spoken decreased 

45.45%.  Additionally, students did not rely on their partner to help solve the problem as 

much, and did not always agree with their partner’s answer.  When this occurred, 

students began using their own solution strategy to come up with a different answer.  

Students were talked out of their solution strategy less often, as seen in the video 

recorded observations. 

 When looking at these finding through the constructivist lens, it is easy to see that 

by participating in the guided incremental steps of this study, students created their own 

understandings of problem solving and employed the strategies that made sense to them.  
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First, students did not solely rely on their partner’s answer.  Toward the end of the 

innovation, they thought for themselves and disagreements in answers occurred.  Next, 

students made connections between the actions implied by the wording of the problem 

and the necessary steps to take to solve the problem.  For some students, that was the use 

of realia or manipulatives, for others it was the use of schematic representations, and still 

for others it was the understanding of the parts of the number sentence.  Students used the 

strategy that made sense to them on the post-assessment, and did it effectively.   

Students also learned from others in the classroom, as social development theory 

and social learning theory describe.  The MKO shared during the strategy conference in 

each lesson and this led to increased complexity of students’ solution strategies and 

understanding of the actions behind solving the problems, as well as increased 

correctness when solving mathematics word problems.  Additionally, working with a 

partner gave students an opportunity to discuss their problem solving ideas and someone 

to assist when they were stuck on a problem.  Students did not always employ the MKO’s 

or their partner’s solution strategy on future problems though.  Students took time to 

understand others’ solution strategies, as in the case of the use of number sentences to 

solve problems, as well as decide if they thought the solution strategy and solution were a 

better method and answer than what they were employing independently.  At the end of 

the innovation, the post-assessment showed that this innovation process combined with 

students’ innate problem solving abilities and helped them develop their problem solving 

efficiency and efficacy. 
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Data Analysis Quality 

 Data analysis quality was considered when designing and implementing this 

study, as well as when analyzing the study’s data.  Of special consideration when 

analyzing data were reliability, validity, and trustworthiness.  Although bias cannot be 

completely eliminated from a study, deliberate actions were taken to minimize it.  First, 

all students who were available for the study were included.  No students were eliminated 

from the sample due to mathematical ability, English language learning status, socio-

economic status, race, nationality, level of parental involvement, age, or gender.  Second, 

how I worked to ensure reliability, validity, and trustworthiness will be described next, as 

well as noting any limitations to these traits.  

Reliability.  Reliability can be described as making sure that procedures used in a 

study are stable across different researchers and within studies (Gibbs, 2007).  This study 

is founded on action research and is meant to impact and influence the teaching in my–

the research-practitioner’s–classroom.  This study is not meant to be generalizable, 

though it may be replicated in other classrooms, with the understanding that the results 

found in this study were applicable to only this study (Stringer, 2007).   

Care has been taken in the design of both methods and implementation of this 

research plan so that reliability will be ensured.  CGI-style problems were used for the 

pre-/post-assessment and the daily student problem solving exercises in this study.  CGI 

has been thoroughly researched beginning in the late 1980s (Carpenter et al., 1999).   

 To insure reliability in the data analysis, multiple safeguards were enlisted.  First, 

intracoder reliability was considered and obtained when analyzing the qualitative data.  

To do this, pre- and post-assessment qualitative data were coded three times, in three 
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different formats.  Codes were then compared to each other and compatibility among the 

codes was analyzed (Johnson & Christensen, 2004).  Next, all transcribed dyads’ solution 

strategy actions and words and 30% of the students’ assessment solution strategy words 

and actions were checked for accuracy by a trained co-analyst.  Since the co-analyst was 

specifically trained by me, intercoder reliability was high, at nearly 90%.  Intercoder 

reliability at 80% or greater is considered reliable (Miles & Huberman, 1994).  Next, 

open codes and axial codes were verified for inclusiveness and accuracy by a trained co-

analyst.  Quantitative data were also peer-checked.  Data entered in Microsoft Word and 

data analysis tests run in SPSS were verified by a seasoned researcher, checking for 

accuracy.  When all quantitative results were found, an additional researcher reviewed 

them for accuracy. 

Validity .  Keeping the results of this study valid took careful planning.  Validity 

is important because without accurate results, this study would serve no one (Gibbs, 

2007).  Since I served as the researcher and also rated the students’ solution strategy and 

strategy subsets and analyzed all of the data, validity could be a concern.  To counter this, 

carefully designed steps were taken.  First, triangulation was used in this study.  Having 

multiple data sources weigh in on findings reduces the chances that inaccurate results will 

be presented (Creswell, 2009).  Also, since students were assigned to my class, and 

therefore selected for the study, using a stratified random sampling technique and all 

students present in the classroom during mathematics time participated in the innovation, 

sampling bias was minimized.  This randomization also helped to eliminate confounding 

variables.  Additionally, the short timeframe, the design, and the participants of this study 

worked in the favor of maintaining a high level of validity.  Since the study took place 
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over the course of four months, one would not expect great natural maturation in second 

grade students’ problem solving abilities on these types of CGI-style problems.  Also, 

being a second grade classroom, mortality, or students leaving the study, was not high 

because students must participate in the day’s math activities if they are in the classroom, 

and only three participants moved during the implementation period.  The study was 

designed so that problem types, names, and numbers used on the pre-/post-assessment 

were not excessively reused on daily problem solving questions, so testing familiarity 

was not an issue.  Additionally, there was a minimum of four months between the 

administration of the pre-assessment and post-assessment, which was enough time 

between test administrations for participants to not recall test questions.  No participants 

commented about having completed these test questions previously while the post-

assessment was being administered.  Another main validity factor in this study was the 

video recorded dyads’ problem solving lengths and number of words spoken results.  

Showing that results were not altered, it can be seen that these findings were not 

statistically significant.  Had there been validity issues, the results would be more apt to 

show favorable results for all aspects of the study.   

When analyzing the Video Recorded Observations, the problem of premature 

typification was addressed in two ways.  First, observations were video recorded.  This 

allowed me to review what students said and did while I was transcribing.  Second, the 

formation of ideas and assertions while a researcher views and transcribes observations is 

a natural process (Erickson, 1986), but one which I tried to minimize as a researcher, 

even though it is difficult to eliminate them completely (Creswell, 2009).  To diminish 

this effect, I looked for disconfirming cases while reviewing transcripts of the 
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observations.  This was important because premature typification would have skewed the 

assertions I created from the observations (Erickson, 1986).  The main drawback of video 

recorded observations is that the researcher misses out on the contextual situation of the 

event because the observer cannot see what happened prior to or after the recording or 

what is going on around the observation site (Erickson, 1986).  I was able to mitigate 

these threats by being in the classroom before, during, and after the video recorded 

observations, conducting two of the three video recorded observations each week, and 

focusing the transcription and analysis on what happened within that dyad during only 

the students-at-work phase of the innovation.  What other dyads were doing during this 

time, and what happened before or after the observation were not included in analysis nor 

allowed to weigh in on findings.  Further, validity was strengthened by me being in the 

classroom everyday for the innovation.  Creswell (2009) describes that the more time the 

researcher is able to spend in the research setting the deeper, more accurate, and more 

robust the finding will be. 

Trustworthiness.  Trustworthiness in qualitative data was a concern in this study 

because it employed two qualitative data sources, student pre-assessment and post-

assessment solution actions and video recorded observations.  To ensure trustworthiness, 

this innovation design, as well as the video recorded observation plan, the assessment 

plan, the data collection plan, and the data analysis plan were reviewed and critiqued by 

external auditors (Creswell, 2009).  These auditors included a small group of fellow 

doctoral student researchers and a seasoned mixed-methods researcher.   
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Degree of Action Plan Implementation 

This action plan was fully implemented as organized and planned, with only one 

alteration; students who were absent from the classroom for a daily problem solving 

question were not included in that day’s percentage correct score.  The comparison of the 

first 20 daily problem solving questions to the last 20 daily problem solving questions 

was the only data analysis that involved daily scores.  This effected 12 out of the 19 

participants at least once during the study.  The rest of the study ran as designed, with the 

innovation occurring once daily for the entire 60 days stated in the plan, and students 

followed the designed implementation steps for each day’s lesson as laid out in the study 

design. 

Consequences of Implementation 

 As a consequence of the implementation, students spoke about reasons why 

people were doing processes and justified their work more than they did in other subject 

areas.  As evidenced by informal classroom observations, conversation in the classroom 

developed at a deeper level than had been previously heard in the classroom.  Students 

were more apt to give reasons for their answers, and classmates were more likely to 

comment on other students’ answers in other subjects.  Implementing this plan required a 

reduction in the amount of time spent on the traditional math program, Scott Foresman 

Mathematics, 2nd grade level.  Despite this, students showed a greater interest in math 

class, seen by student interactions with each other, the number of students participating in 

the lesson, the number of students completing their math tasks, and an increase in the 

number of students talking about math class outside of the math period. 

 



 

 
 

148

CHAPTER 6 

CONCLUSION 

Results Reflections 

 Onslow (1991) states that to be an efficient problem solver, students must be able 

to flexibly use a variety of strategies to solve problems.  Students should be able to move 

from abstract to concrete and have understanding with each method.  When students 

show this, they are mathematically literate.  Students in this study used strategies flexibly.  

They used the strategy they felt most adept with and the strategy they were able to use to 

come to the correct answer on each problem.  Students used their understandings to guide 

their problem solving strategies, as CGI states (Carpenter et al., 1999).  This innovation, 

with its systematic development from concrete to abstract, allowed students to develop 

their problem solving understandings and abilities. 

Lessons Learned 

The favorable results of this study have had an impact on my pedagogy, have 

raised my expectations for my students, have deepened my beliefs about my students’ 

capabilities, will guide how I will tackle problems in my classroom in the future, and will 

influence the lessons I design with my coworkers to teach mathematics to our second 

grade students.   

Implications for my future practice.  I was very pleased that I tried a new 

innovation in my classroom, not only because my students exceeded my expectations, but 

that I pushed myself out of my comfort zone.  I am an educator that is willing to try 

divergent ways of teaching if I feel it will benefit my students, and I normally teach using 

a constructivist approach, but at times I give up on an idea too early.  I may have done 
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that in this case as well if I had not had my research plan and a reason to continue.  I 

remember watching some of my lower ability students complete the daily problems the 

first two weeks and many of their answers were guesses.  Even working with a partner, 

they were unable to unpack the problems, describe what they were doing, or explain why 

they did what they did to solve the problem.  Though I had thoroughly researched 

strategies to include in my innovation and was aware of the successes these strategies had 

in other classrooms, I did not know if my innovation would be successful in my 

classroom.  It was not until the 13th day of implementation that my two lowest ability 

dyads were able to successfully solve the day’s problem and explain what they were 

doing.  At that point I knew I was on the right path.  There have been years in the past 

when even at the end of the school year, my students with low mathematics ability could 

not successfully solve like-worded problems.  In hindsight, I am thankful that it was 

necessary for me to continue with my innovation.   

 Taking what I have learned with me in the future, I plan to continue teaching 

through social learning, social development, and constructivist frameworks.  Giving 

students the ability to work together and to learn from each other will continue to guide 

lessons I prepare for my students (Bandura, 1977).  Allowing students to share their 

thinking and listen to others’ thinking will continue to be integral parts of students’ days 

(Vygotsky, 1978).  Teaching with an expectation that students truly listen to classmates’ 

thoughts and ideas, relate others’ ideas to their own, and work cooperatively to learn 

together will help my students continue to succeed in mathematics problem solving and 

in new areas (Vygotsky, 1962).  
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Implications for my future research.  Completing this dissertation study has 

given me a basis for future studies, and I have already started a new action research 

project which involves the entire second grade team.  When conducting the video 

recorded weekly observations, other dyads in the classroom showed strong interest in 

being video recorded.  Because I observed that no students gave up on the problem they 

were solving while they were being video recorded, I thought that using video cameras in 

the classroom might be an effective strategy for motivating students to persevere when 

solving challenging math problems.  I applied for and received a grant that allowed me to 

purchase seven Flip cameras for my grade level.  I have structured my new study in a 

similar fashion to the study I just completed, using a pre- and post-test design, but this 

time, I am focusing on researching the interplay between students using video cameras to 

record their work, perseverance, and problem solving abilities.  Again, CGI-style 

problem types are being used, but numbers with greater values are included in the 

problems.  This research project began in January and will conclude in May and has 80 

participants.   

Implications for participants.  By participating in this study, all students showed 

growth in their ability to correctly solve CGI-style mathematics word problems.  Further, 

many students became more reliant on mental strategies and were able to use 

visualization to solve problems with understanding.  Additionally, they learned to 

dialogue and discuss with their classmates, in both paired and whole group settings.  Just 

as Hartweg and Heisler (2007) found in their study, students showed respect when 

discussing others’ problem solving, including when errors were found.  They worked as a 

group to develop mathematical understandings from the misconception.  This is an 
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important development, especially for students from low socio-economic homes; a 

development in which the students, as well as future teachers and future employers, will 

benefit (Kilpatrick & Swafford, 2002; Lester Jr. & Charles, 2003; NCTM, 2000, 2004; 

Sutton & Krueger, 2002).   

 But one of the greatest benefits I have seen come from this study was something 

that was not directly measured.  I have observed that student motivation has improved as 

a result of the study.  During this study, students were excited for the daily problem 

solving time, and even now still cheer when they see a word problem.  With some extra 

enthusiasm on my part after the study ended, this has carried over to other subject areas 

as well.  I observe on a daily basis, students who are engaged, ask questions of each 

other, give their thoughts about what we are studying, and have a positive attitude toward 

learning new things.  Students informally start class discussions more in the classroom, 

and students feel at ease when sharing ideas with the class.  This is important to me as a 

teacher because Mohd, Mahmood, and Ismail (2011) describe that there is a positive 

correlation between students’ attitudes about problem solving and their overall 

mathematics achievement.  Additionally, cognitive development occurs faster in students 

who are motivated and engaged in their learning (Kamii & Rummelsburg, 2008), and 

higher levels of participation and attention relate to higher standardized test scores 

(Alexander et al., 1993; Duncan et al., 2007; Finn et al., 1995; Horn & Packard, 1985; 

McClelland et al., 2000; Schaefer & McDermott, 1999; Tramontana et al., 1988; Yen et 

al., 2004).  Continuing to promote these ways of being as students will be an important 

aspect of success in my classroom.   
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New Questions 

 It was clear in this study that student participants grew in many different ways.  

Most notably, and what I set out to help them improve, their problem solving abilities 

improved.  Their understanding of how to solve problems increased, their skills to check 

the reasonableness of their answers increased, their ability to try different strategies 

increased, their ability to internalize mathematics problems increased, their ability to use 

higher order problem solving hierarchy methods increased, and their independent 

thinking increased.  I understand that there were parts of this innovation that were not 

directly studied that very likely played a large role in contributing to these improvements.  

First, every day students interacted with an MKO dyad during the strategy conference.  

This MKO dyad shared their solution strategies with the class and then allowed 

classmates to ask questions and have discussions about their solution strategies.  Through 

my informal observations, I found that the discussions the class had developed 

throughout the implementation period.  At first, students listening to the MKO appeared 

to sit patiently while the MKOs described how they solved the problem.  The discussion 

that followed basically revolved around students asking if they could go to the front of 

the class and show how they solved the problem, even if their solution strategy was 

exactly the same as what was just shown.  Throughout the course of the innovation, 

students began listening and trying to understand what their classmates were saying.  The 

discussion became robust, with questions and comments about the solution strategies 

shared.  Students were able to compare their solution strategy with the MKO dyad’s 

solution strategy and were able to identify if they had an original idea that the class would 

benefit from hearing about or if their idea was very similar to the MKOs’.  At the end of 
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the innovation period, students were making agree/disagree statements with justifications, 

asking what would happen to the answer if the numbers were different, suggesting 

alternative equations that could be used to solve the problem, and suggesting base ten 

strategies that could be used to mentally solve problems.  I believe that future research in 

how students in the class viewed the role of the MKO and the affect of the MKO on their 

problem solving skills, including strategies used and correctness of answers, would be 

beneficial.  My research has shown that my innovation as a whole was effective in 

increasing students’ problem solving abilities, but it does not identify the direct parts of 

the innovation that benefitted students the most or describe students’ perceptions of the 

strategy conference portion of the innovation.  If the strategy conference is shown to be 

of major importance to developing students’ abilities, then it will likely also be beneficial 

to my students in other areas of mathematics instruction.  This would directly coincide 

with the goals of the developers of the Common Core State Standards (White & Dauksas, 

2012) and what NCTM deems as effective mathematics pedagogical strategies (NCTM, 

2000).   

Conclusion 

Through this study I learned quite a bit about myself as an educator and 

researcher and I learned more about how my children learn mathematics.  More 

importantly than these things, I feel that I learned what can be possible for my Title I 

students.  It was amazing for me to see what a systematic, research based practice 

conducted over an extended period can guide my students into being able to do.  In the 

end, the students made an outstanding effort to move outside of their comfort zones and 

participate in authentic class discussions.  They thought about what classmates were 
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saying, which is not always easy (Reinhart, 2000), especially for a non-native English 

speaking 7 year old.  When discussing what I have witnessed at San Marcos Elementary 

at the beginning of this paper, I asked two deep questions about the mathematics program 

at the school–Why were these stagnant test scores continuing to occur?  What happens if 

students lack the background experiences and knowledge needed for mental imagery to 

create schematic representations of problem situations?  Through this study I did my best 

to help develop the problem solving skills of my second grade students so that when they 

move on to the intermediate elementary grades these questions will still not be lingering 

for them.  Action research is designed to positively impact the people that the practitioner 

works with (Stringer, 2007), and in this case I feel satisfied that I did.  I hope my students 

do as well.   
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APPENDIX A 
 

PRE-ASSESSMENT/POST-ASSESSMENT QUESTIONS 
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Problem Solving Pre-/Post-Assessment 

Join, Change Unknown Problem 

1.  Robin had 4 toy cars.  How many more toy cars does she need to get for her birthday 

to have 11 toy cars all together? 

 

Join, Start Unknown Problem 

2.  Deborah had some books.  She went to the library and got 3 more books.  Now she 

has 8 books altogether.  How many books did she start with? 

 

Separate, Change Unknown Problem 

3.  Roger had 13 stickers.  He gave some to Colleen.  He has 4 stickers left.  How many 

stickers did he give to Colleen? 

 

Separate, Start Unknown Problem 

4.  Some birds were sitting on a wire.  3 birds flew away.  There were 8 birds still sitting 

on the wire.  How many birds were sitting on the wire before the 3 birds flew away? 

 

Compare, Referent Unknown Problem 

5.  Connie has 13 marbles.  She has 5 more marbles than Juan.  How many marbles does 

Juan have? 

 
Adapted from Children’s Mathematics: Cognitively Guided Instruction (p. 12, 16, 17, 19, 
& 29), T. P. Carpenter, E. Fennema, M. L. Franke, L. Levi, & S. B. Empson, 1999, 
Portsmouth, NH: Heinemann.  Copyright 1999 by Thomas P. Carpenter, Elizabeth 
Fennema, Megan Loef Franke, Linda Levi, Susan B. Empson. 
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APPENDIX B 
 

SOLUTION STRATEGY RECORDING FORM 
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Solution Strategy Recording Form 

Student ID Number _______________________________________________________ 

Date of Assessment _______________________________________________________ 

Pre-assessment Post-assessment 

Problem 1:  Robin had 4 toy cars.  How many more toy cars does she need to get for her 
birthday to have 11 toy cars all together? 
 
Student actions:  __________________________________________________________ 

________________________________________________________________________

________________________________________________________________________ 

Student’s answer:  ________________________________________________________ 

Is the student’s answer correct?   yes  no  

Solution strategies:  Circle the strategies the student used.   

Solution Strategy Direct Modeling 
 

Counting Number Facts 

Solution Strategy  
Subset 

Joining All Counting On From 
First 

Derived Fact 

Joining To Counting On From 
Larger 

Recalled Fact 

Separating From Counting On To  

Separating To Counting Down  

Matching Counting Down To  

Trial and Error   
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Problem 2:  Deborah had some books.  She went to the library and got 3 more books.  
Now she has 8 books altogether.  How many books did she start with? 
 
Student actions:  __________________________________________________________ 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

Student’s answer:  ________________________________________________________ 

Is the student’s answer correct?   yes  no  

Solution strategies:  Circle the strategies the student used.   

Solution Strategy Direct Modeling 
 

Counting Number Facts 

Solution Strategy  
Subset 

Joining All Counting On From 
First 

Derived Fact 

Joining To Counting On From 
Larger 

Recalled Fact 

Separating From Counting On To  

Separating To Counting Down  

Matching Counting Down To  

Trial and Error   
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Problem 3:  Roger had 13 stickers.  He gave some to Colleen.  He has 4 stickers left.  
How many stickers did he give to Colleen?  
 
Student actions:  __________________________________________________________ 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

Student’s answer:  ________________________________________________________ 

Is the student’s answer correct?   yes  no  

Solution strategies:  Circle the strategies the student used.   

Solution Strategy Direct Modeling 
 

Counting Number Facts 

Solution Strategy  
Subset 

Joining All Counting On From 
First 

Derived Fact 

Joining To Counting On From 
Larger 

Recalled Fact 

Separating From Counting On To  

Separating To Counting Down  

Matching Counting Down To  

Trial and Error   
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Problem 4:  Some birds were sitting on a wire.  3 birds flew away.  There were 8 birds 
still sitting on the wire.  How many birds were sitting on the wire before the 3 birds flew 
away? 
 
Student actions:  __________________________________________________________ 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

Student’s answer:  ________________________________________________________ 

Is the student’s answer correct?   yes  no  

Solution strategies:  Circle the strategies the student used.   

Solution Strategy Direct Modeling 
 

Counting Number Facts 

Solution Strategy  
Subset 

Joining All Counting On From 
First 

Derived Fact 

Joining To Counting On From 
Larger 

Recalled Fact 

Separating From Counting On To  

Separating To Counting Down  

Matching Counting Down To  

Trial and Error   
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Problem 5:  Connie has 13 marbles.  She has 5 more marbles than Juan.  How many 
marbles does Juan have?  
 
Student actions:  __________________________________________________________ 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

Student’s answer:  ________________________________________________________ 

Is the student’s answer correct?   yes  no  

Solution strategies:  Circle the strategies the student used.  

Solution Strategy Direct Modeling 
 

Counting Number Facts 

Solution Strategy  
Subset 

Joining All Counting On From 
First 

Derived Fact 

Joining To Counting On From 
Larger 

Recalled Fact 

Separating From Counting On To  

Separating To Counting Down  

Matching Counting Down To  

Trial and Error   

Adapted from Children’s Mathematics: Cognitively Guided Instruction (p. 12, 16, 17, 19, 
& 29), T. P. Carpenter, E. Fennema, M. L. Franke, L. Levi, & S. B. Empson, 1999, 
Portsmouth, NH: Heinemann.  Copyright 1999 by Thomas P. Carpenter, Elizabeth 
Fennema, Megan Loef Franke, Linda Levi, Susan B. Empson. 
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APPENDIX C 

PHASE 1, 2, AND 3 PROBLEM SOLVING QUESTIONS 
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Phase 1, Day 1:  (Part-Part-Whole, Whole Unknown) 

Francine has 3 red markers and 5 blue markers.  How many markers does she have? 

 

Phase 1, Day 2:  (Separate, Results Unknown) 

There were 8 seals playing.  3 seals swam away.  How many seals were still playing? 

 

Phase 1, Day 3:  (Compare, Difference Unknown) 

Megan has 3 stickers.  Randy has 8 stickers.  How many more stickers does Randy have 

than Megan? 

 

Phase 1, Day 4:  (Join, Results Unknown) 

Maggie had 7 pencils.  She bought 4 more from the school store.  How many pencils does 

she have now? 

 

Phase 1, Day 5:  (Separate, Change Unknown) 

Daisy had 13 marbles.  She gave some to Luke.  Now she has 5 marbles left.  How many 

marbles did Daisy give to Luke? 

 

Phase 1, Day 6:  (Compare, Referent Unknown) 

Lilly found 8 shells.  She has 2 more shells than James.  How many shells does James 

have? 
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Phase 1, Day 7:  (Join, Change Unknown) 

Felicity has 3 raisins.  How many more raisins does she need to have 10 raisins 

altogether? 

 

Phase 1, Day 8:  (Part-Part-Whole, Part Unknown) 

Humberto loves to read books.  He has 9 books in all.  5 of his books are picture books 

and the rest are chapter books.  How many chapter books does Humberto have? 

 

Phase 1, Day 9:  (Join, Start Unknown) 

Val had some erasers.  Herb gave her 6 more.  Val now has 9 erasers.  How many erasers 

did Val have to start with? 

 

Phase 1, Day 10:  (Join, Results Unknown) 

Shanique made a book.  She used 10 pieces of her own paper.  She needed more paper so 

she got 4 more pieces from her mom.  How many pieces of paper did Shanique use in her 

book? 

 

Phase 2, Day 1:  (Join, Start Unknown) 

Olivia saw some ladybugs on a leaf.  3 more flew up and landed on the leaf.  Now there 

are 7 ladybugs on the leaf.  How many ladybugs were on the leaf to start? 

 

 

 



 

 
 

178

Phase 2, Day 2:  (Part-Part-Whole, Whole Unknown) 

Maxwell Jones collects shapes.  He has 6 triangles and 5 rectangles.  How many shapes 

does he have in all? 

 

Phase 2, Day 3:  (Compare, Difference Unknown) 

Vinnie has 7 blue flowers and 9 red flowers.  How many more red flowers does Vinnie 

have than blue flowers? 

 

Phase 2, Day 4:  (Part-Part-Whole, Part Unknown) 

Galaxy Comic Books Store sells only expensive Spiderman and Batman comic books.  

They have a total of 10 comic books in their store.  6 of the comic books are Batman and 

the rest are Spiderman.  How many Spiderman comic books does Galaxy Comic Books 

Store have? 

 

Phase 2, Day 5:  (Compare, Referent Unknown) 

Mandy has 12 potato chips.  She has 4 more chips than her brother, Josue.  How many 

potato chips does Josue have? 

 

Phase 3, Day 1:  (Compare, Difference Unknown) 

Hildy has 12 cupcakes.  Martin has 13 cupcakes.  How many more cupcakes does Martin 

have than Hildy? 
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Phase 3, Day 2:  (Separate, Change Unknown) 

Rebecca had 14 pea plants.  She overwatered them and some died.  She now has 9 living 

pea plants.  How many pea plants died? 

 

Phase 3, Day 3:  (Join, Start Unknown) 

Petunia had some paperclips.  She found 3 more on the floor.  Now she has 11 paperclips.  

How many paperclips did Petunia originally have? 

 

Phase 3, Day 4:  (Part-Part-Whole, Part Unknown) 

Lyle has 15 video games.  5 are hunting games and the rest are driving games.  How 

many driving video games does Lyle have? 

 

Phase 3, Day 5:  (Separate, Results Unknown) 

The Willis family had 5 cars.  One got in an accident and the family had to get rid of it.  

How many cars does the Willis family have left? 

 

Phase 3, Day 6:  (Compare, Quantity Unknown) 

Patsy has 16 rings.  Lainey has 5 more rings than Patsy.  How many rings does Lainey 

have? 

 

Phase 3, Day 7:  (Separate, Start Unknown) 

Gracie had some pictures of her friends in her purse.  She lost 3 of the pictures.  Gracie 

now has 6 pictures left.  How many pictures of her friends did Gracie have to start? 
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Phase 3, Day 8:  (Compare, Referent Unknown) 

Steven has 12 bite-size cookies.  He has 8 more cookies than Chantel.  How many bite-

size cookies does Chantel have? 

 

Phase 3, Day 9:  (Part-Part-Whole, Whole Unknown) 

Jasmine has 12 pieces of watermelon bubblegum and 14 pieces of strawberry bubblegum.  

How many pieces of gum does she have? 

 

Phase 3, Day 10:  (Compare, Quantity Unknown) 

Hareem has 1 ant in his ant farm.  Trudy has 13 more ants than Hareem.  How many ants 

does Trudy have on her ant farm? 

 
Adapted from Children’s Mathematics: Cognitively Guided Instruction (p. 7-29),  
T. P. Carpenter, E. Fennema, M. L. Franke, L. Levi, & S. B. Empson, 1999, Portsmouth, 
NH: Heinemann.  Copyright 1999 by Thomas P. Carpenter, Elizabeth Fennema, Megan 
Loef Franke, Linda Levi, Susan B. Empson. 
 

 

 

 

 

 

 

 

 



 

 
 

181

APPENDIX D 

MATHEMATICS PROBLEM SOLVING JOURNAL 
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My Mathematics Problem Solving JournalMy Mathematics Problem Solving JournalMy Mathematics Problem Solving JournalMy Mathematics Problem Solving Journal    

By ______________________By ______________________By ______________________By ______________________    
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Phase 4, Day 1:  Please solve this problem using manipulatives and 

then a schematic representation.  Write your answer in the blank. 

 

Stacy had 15 erasers.  She gave 3 to Jeremy.  How many 

erasers does Stacy have left? 

 

 

 

 

 

 

 

 

 

 

 

Answer:  Stacy has __________ erasers left. 
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Phase 4, Day 2:  Please solve this problem using manipulatives and 

then a schematic representation.  Write your answer in the blank. 

 

Clara saw 13 butterflies in her garden.  Some flew away.  

Now she sees 6 butterflies left.  How many butterflies flew 

away? 

 

 

 

 

 

 

 

 

 

 

Answer:  _________ butterflies flew away. 
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Phase 4, Day 3:  Please solve this problem using manipulatives and 

then a schematic representation.  Write your answer in the blank. 

 

Joyce has 11 seashells.  Juan has 9 seashells.  How many 

more seashells does Joyce have than Juan? 

 

 

 

 

 

 

 

 

 

 

 

Answer:  Joyce has __________ more seashells than Juan. 
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Phase 4, Day 4:  Please solve this problem using manipulatives and 

then a schematic representation.  Write your answer in the blank. 

 

Flora found 6 beautiful fall leaves.  Then she found 4 more 

leaves.  How many leaves does Flora have altogether? 

 

 

 

 

 

 

 

 

 

 

 

Answer:  Flora has __________ leaves. 
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Phase 4, Day 5:  Please solve this problem using manipulatives and 

then a schematic representation.  Write your answer in the blank. 

 

Dale has 5 quarters.  How many more quarters does he 

need to have 12 quarters altogether? 

 

 

 

 

 

 

 

 

 

 

 

Answer:  Dale needs __________ more quarters. 
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Phase 5, Day 1:  Please solve this problem using a schematic 

representation and write your answer in the blank. 

 

Julio had 9 envelopes to take to the post office.  His mom 

gave him 5 more envelopes.  How many envelopes did he 

have then? 

 

 

 

 

 

 

 

 

 

Answer:  Julio had _______________ envelopes to take to 

the post office. 
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Phase 5, Day 2:  Please solve this problem using a schematic 

representation and write your answer in the blank. 

 

Colleen had 12 guppies.  She gave 5 guppies to Roger.  

How many guppies does Colleen have left? 

 

 

 

 

 

 

 

 

 

 

 

Answer:  Colleen has __________ guppies left. 
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Phase 5, Day 3:  Please solve this problem using a schematic 

representation and write your answer in the blank. 

 

Mark has 6 toy mice.  Joy has 11 mice.  Joy has how many 

more toy mice than Mark? 

 

 

 

 

 

 

 

 

 

 

 

Answer:  Joy has ________ more toy mice than Mark. 
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Phase 5, Day 4:  Please solve this problem using a schematic 

representation and write your answer in the blank. 

 

Bryce had 3 pieces of candy.  Rosa gave him some more 

candy.  Now Bryce has 9 pieces of candy.  How many 

pieces of candy did Rosa give him? 

 

 

 

 

 

 

 

 

 

 

Answer:  Rosa gave Bryce _________ pieces of candy. 
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Phase 5, Day 5:  Please solve this problem using a schematic 

representation and write your answer in the blank. 

 

Lisa had some comic books.  She went to the store and 

bought 5 more comic books.  Now she has 11 comic books 

altogether.  How many comic books did she have to start 

with?  

 

 

 

 

 

 

 

 

 

Answer:  Lisa had _________ comic books to start. 
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Phase 5, Day 6:  Please solve this problem using a schematic 

representation and write your answer in the blank. 

 

There were 4 clean cups in the cupboard.  Jimmy’s family 

used some of the cups.  Now there is 1 cup in the cupboard.  

How many cups did Jimmy’s family use?   

 

 

 

 

 

 

 

 

 

 

Answer:  Jimmy’s family used _________ cups. 
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Phase 5, Day 7:  Please solve this problem using a schematic 

representation and write your answer in the blank. 

 

Linda has 5 markers.  How many more markers does she 

need to have 13 markers altogether? 

 

 

 

 

 

 

 

 

 

 

 

Answer:  Linda needs _________ more markers. 
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Phase 5, Day 8:  Please solve this problem using a schematic 

representation and write your answer in the blank. 

 

Rolando has 14 stuffed animals.  Horace has 6 stuffed 

animals.  How many more stuffed animals does Rolando 

have than Horace? 

 

 

 

 

 

 

 

 

 

Answer:  Rolando has _________ more stuffed animals than 

Horace. 
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Phase 5, Day 9:  Please solve this problem using a schematic 

representation and write your answer in the blank. 

 

Gibby had 16 video games.  He has 9 more video games 

than Veronica.  How many video games does Veronica 

have? 

 

 

 

 

 

 

 

 

 

 

Answer:  Veronica has _________ video games. 
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Phase 5, Day 10:  Please solve this problem using a schematic 

representation and write your answer in the blank. 

 

Blaze has 12 gray socks and 7 red socks.  How many socks 

does he have? 

 

 

 

 

 

 

 

 

 

Number sentence:  ____________________________ 

 

Answer:  Blaze has __________ socks. 
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Phase 6, Day 1:  Please solve this problem using a schematic 

representation and a number sentence.  Write your answer in the 

blank. 

 

CiCi had 14 books.  She returned 4 to the library.  How many 

books does CiCi have left? 

 

 

 

 

 

 

 

 

Number sentence:  ____________________________ 

 

Answer:  CiCi has _________ books left. 
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Phase 6, Day 2:  Please solve this problem using a schematic 

representation and a number sentence.  Write your answer in the 

blank. 

 

Jasmine had some grapes.  She gave 3 to Marco. Now she 

has 8 grapes left.  How many grapes did Jasmine have to 

start with? 

 

 

 

 

 

 

 

Number sentence:  ____________________________ 

 

Answer:  Jasmine started with _________ grapes. 
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Phase 6, Day 3:  Please solve this problem using a schematic 

representation and a number sentence.  Write your answer in the 

blank. 

 

Caleb has 5 miniature candy bars.  Sue has 8 more than 

Caleb.  How many miniature candy bars does Sue have? 

 

 

 

 

 

 

 

 

Number sentence:  ____________________________ 

 

Answer:  Sue has __________ miniature candy bars. 
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Phase 6, Day 4:  Please solve this problem using a schematic 

representation and a number sentence.  Write your answer in the 

blank. 

 

Karen has 12 marbles.  4 are blue and the rest are orange.  

How many orange marbles does Karen have? 

 

 

 

 

 

 

 

 

Number sentence:  ____________________________ 

 

Answer:  Karen has _________ orange marbles. 
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Phase 6, Day 5:  Please solve this problem using a schematic 

representation and a number sentence.  Write your answer in the 

blank. 

 

Frank had some pet lizards.  Annie gave him 7 more lizards.  

Now he has 13 lizards.  How many pet lizards did Frank 

have before Annie gave him more? 

 

 

 

 

 

 

 

Number sentence:  ____________________________ 

 

Answer:  Frank had __________ pet lizards. 
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Phase 7, Day 1:  Please solve this problem using a number 

sentence.  Write your answer in the blank. 

 

Jane has 7 purple paintbrushes and 11 yellow paintbrushes.  

How many paintbrushes does she have?   

 

Number sentence:  ____________________________ 

 

Answer:  Jane has __________ paintbrushes. 
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Phase 7, Day 2:  Please solve this problem using a number 

sentence.  Write your answer in the blank. 

 

Flo has a chicken coop.  She first gathered 9 eggs.  Then 

her hens laid 3 more eggs.  How many eggs did she have 

then? 

 

Number sentence:  ____________________________ 

 

Answer:  Flo has _________ eggs. 
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Phase 7, Day 3:  Please solve this problem using a number 

sentence.  Write your answer in the blank. 

 

Wilma has 7 jelly bracelets.  How many more jelly bracelets 

does she need to get from her family for Christmas to have 

10 jelly bracelets in all? 

 

Number sentence:  ____________________________ 

 

Answer:  Wilma needs to get __________ more jelly 

bracelets. 
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Phase 7, Day 4:  Please solve this problem using a number 

sentence.  Write your answer in the blank. 

 

Paul had 20 fireflies in a jar.  He let 9 go.  How many fireflies 

does Paul have left? 

 

Number sentence:  ____________________________ 

 

Answer:  Paul has __________ fireflies left. 
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Phase 7, Day 5:  Please solve this problem using a number 

sentence.  Write your answer in the blank. 

 

Destiny has 17 smelly stickers.  13 are strawberry scented 

and the rest are chocolate scented.  How many chocolate 

scented smelly stickers does Destiny have? 

 

Number sentence:  ____________________________ 

 

Answer:  Destiny has __________ chocolate scented 

stickers. 
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Phase 7, Day 6:  Please solve this problem using a number 

sentence.  Write your answer in the blank. 

 

Sammy loves to collect colorful buttons.  He had 12 buttons.  

He gave some to Wendy.  He has 2 buttons left.  How many 

buttons did he give to Wendy? 

 

Number sentence:  ____________________________ 

 

Answer:  Sammy gave __________ buttons to Wendy. 
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Phase 7, Day 7:  Please solve this problem using a number 

sentence.  Write your answer in the blank. 

 

Leslie has 8 carrot sticks on her lunch tray.  Kevin has 12 

carrot sticks.  Kevin has how many more carrot sticks than 

Leslie? 

 

Number sentence:  ____________________________ 

 

Answer:  Kevin has __________ more carrot sticks than 

Leslie. 
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Phase 7, Day 8:  Please solve this problem using a number 

sentence.  Write your answer in the blank. 

 

LaDova had some pretzels.  Her teacher gave her 9 more 

pretzels at snack time.  Then she had 13 pretzels.  How 

many pretzels did LaDova have before snack time? 

 

Number sentence:  ____________________________ 

 

Answer:  LaDova had ___________ pretzels before snack 

time. 
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Phase 7, Day 9:  Please solve this problem using a number 

sentence.  Write your answer in the blank. 

 

Sam had 24 flowers.  He picked 3 more.  How many flowers 

did he have then? 

 

Number sentence:  ____________________________ 

 

Answer:  Sam now has __________ flowers. 
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Phase 7, Day 10:  Please solve this problem using a number 

sentence.  Write your answer in the blank. 

 

Bill had some baseball cards.  He gave 2 to Spencer.  Now 

Bill has 21 cards left.  How many baseball cards did Bill have 

to start with? 

 

Number sentence:  ____________________________ 

 

Answer:  Bill started with __________ baseball cards. 
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Phase 7, Day 11:  Please solve this problem using a number 

sentence.  Write your answer in the blank. 

 

Ellen had 3 tomatoes.  She picked 5 more tomatoes.  How 

many tomatoes does Ellen have now? 

 

Number sentence:  ____________________________ 

 

Answer:  Ellen now has __________ tomatoes. 

 



 

 
 

214

Phase 7, Day 12:  Please solve this problem using a number 

sentence.  Write your answer in the blank. 

 

Deshawn has 13 pencils.  He has 5 more pencils than Tricia.  

How many pencils does Tricia have? 

 

Number sentence:  ____________________________ 

 

Answer:  Tricia has ___________ pencils. 
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Phase 7, Day 13:  Please solve this problem using a number 

sentence.  Write your answer in the blank. 

 

Chuck has 3 peanuts.  Clara gave him some more peanuts.  

Now Chuck has 8 peanuts.  How many peanuts did Clara 

give him? 

 

Number sentence:  ____________________________ 

 

Answer:  Clara gave Chuck _________ peanuts. 
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Phase 7, Day 14:  Please solve this problem using a number 

sentence.  Write your answer in the blank. 

 

Ray has 15 fish.  9 are goldfish and the rest are angelfish.  

How many angelfish does Ray have? 

 

Number sentence:  ____________________________ 

 

Answer:  Ray has _________ angelfish. 
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Phase 7, Day 15:  Please solve this problem using a number 

sentence.  Write your answer in the blank. 

 

Paco has 8 bouncy balls.  Nina has 3 more than Paco.  How 

many bouncy balls does Nina have? 

 

Number sentence:  ____________________________ 

 

Answer:  Nina has ___________ bouncy balls. 

 

Adapted from Children’s Mathematics: Cognitively Guided Instruction (p. 7-29),  
T. P. Carpenter, E. Fennema, M. L. Franke, L. Levi, & S. B. Empson, 1999, Portsmouth, 
NH: Heinemann.  Copyright 1999 by Thomas P. Carpenter, Elizabeth Fennema, Megan 
Loef Franke, Linda Levi, Susan B. Empson. 
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APPENDIX E 

DAILY ANSWER RECORDING SLIP SAMPLE 
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Name ______________________  Date ______________ 

Francine has ____________ markers. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

Name ______________________  Date ______________ 

Francine has ____________ markers. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

Name ______________________  Date ______________ 

Francine has ____________ markers. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

Name ______________________  Date ______________ 

Francine has ____________ markers. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

Name ______________________  Date ______________ 

Francine has ____________ markers. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

Name ______________________  Date ______________ 

Francine has ____________ markers. 

 
Note.  This form will be cut into strips and each student will complete one slip.  This 
form is for the first day of the innovation. 
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APPENDIX F 

STUDENT ANSWER CORRECTNESS CHART 
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Pre-assessment / Post-assessment 
Student’s 
ID # 

Question Number Number 
Correct 

% 
Correct 1 2 3 4 5 
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APPENDIX G 

VIDEO RECORDING OBSERVATION PROTOCOL 
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Date: 

Time: 

Dyad number: 

Problem: 

Descriptive Notes 
(dialogue, events, strategies, 
movements, etc.) 

Reflective Notes 
(thoughts, speculations, biases, 
feelings, impressions, etc.) 

  

Adapted from Research Design: Qualitative, Quantitative, and Mixed Methods Approaches (p. 
180-181), by J. W. Creswell, 2009, New Delhi, India: Sage.  Copyright 2009 by Sage 
Publications. 
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APPENDIX H 

STUDENT ANSWER SOLUTION STRATEGY CHART 
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Pre-assessment and Post-assessment Comparison 

Student’s ID # 

Question Number 
1 2 3 4 5 

Pre Post Pre Post Pre Post Pre Post Pre Post 
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APPENDIX I 

DAILY PROBLEM SOLVING ANSWER CHART 
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Problem 
Number 

1 2 3 4 5 6 7 8 9 10 11 12 13 

Correct 
Answer 

             

Student’s 
ID # 

             

              
              
              
              
              
              
              
              
              
              
              
              
               
              
              
              
              
              
              

% 
Correct 
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APPENDIX J 

VIDEO RECORDED OBSERVATION DYADS TRANSCRIPTION DATA CHART 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

229

 
Low 

Date 8-1 8-8 8-15 8-22 8-29 9-5 9-12 9-19 
Correct 

Y/N 
        

Problem 
Type 

        

# of Words 
Said 

        

# of  
Words 
Said 

Without 
Problem  

        

Length         
Phase/Day P1/D3 P1/D8 P2/D3 P3/D3 P3/D8 P4/D2 P5/D2 P5/D7 
Average 

Length per 
Phase 

     

Medium 
Date 8-1 8-8 8-15 8-22 8-29 9-5 9-12 9-19 

Correct 
Y/N 

        

Problem 
Type 

        

# of Words 
Said 

        

# of Words 
Said 

Without 
Problem  

        

Length         
Phase/Day P1/D3 P1/D8 P2/D3 P3/D3 P3/D8 P4/D2 P5/D2 P5/D7 
Average 

Length per 
Phase 
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High 
Date 8-1 8-8 8-15 8-22 8-29 9-5 9-12 9-19 

Correct 
Y/N 

        

Problem 
Type 

        

# of Words 
Said 

        

# of  
Words 
Said 

Without 
Problem  

        

Length         
Phase/Day P1/D3 P1/D8 P2/D3 P3/D3 P3/D8 P4/D2 P5/D2 P5/D7 
Average 

Length per 
Phase 
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APPENDIX K 

PRE- & POST-ASSESSMENT SOLUTION TRANSCRIPTION CHART 
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Student ID #: 

Pre-assessment or Post-assessment: 

Question 1:  Did the student answer the problem correctly?  ___________ 
Field Notes: 
 

 

 

Question 2:  Did the student answer the problem correctly?  ___________ 
Field Notes: 
 

 

 

Question 3:  Did the student answer the problem correctly?  ___________ 
Field Notes: 
 

 

 

Question 4:  Did the student answer the problem correctly?  ___________ 
Field Notes: 
 

 

 

Question 5:  Did the student answer the problem correctly?  ___________ 
Field Notes: 
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APPENDIX L 

CATEGORIES PRE- AND POST-ASSESSMENT SOLUTION STRATEGIES 
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Code Category Definition Examples 
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APPENDIX M 

CATEGORIZED VIDEO RECORDED OBSERVATION DATA FORM 
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Code Category Definition Examples 
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APPENDIX N 

COMPLETED STUDENT ANSWER SOLUTION STRATEGY CHART 
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Student’s 
ID # 

Question Number 
1 2 3 4 5 

Pre Post Pre Post Pre Post Pre Post Pre Post 
1 1 2 1 3 2 2 1 3 1 2 
2 1 2 1 2 1 1 1 2 1 1 
3 0 1 0 3 0 1 0 1 0 3 
4 1 1 1 3 3 3 1 3 1 1 
5 1 3 1 3 1 1 1 1 1 1 
6 1 2 3 3 2 1 3 3 1 3 
7 1 3 1 1 1 1 1 1 1 1 
8 1 1 1 2 1 1 1 1 1 1 
9 2 1 1 3 1 1 1 3 1 1 
10 1 1 3 3 3 1 2 1 1 1 
11 1 1 0 1 0 2 0 3 1 1 
12 1 1 1 1 1 3 1 3 3 2 
13 1 3 3 3 3 3 3 3 3 3 
14 1 3 1 3 1 3 1 3 1 1 
15 1 3 1 3 1 3 1 1 1 1 
16 1 2 1 2 1 2 1 2 1 1 
17 1 3 1 3 1 3 1 3 1 3 
18 1 3 1 3 1 1 1 3 1 2 
19 2 3 3 3 1 3 2 3 1 3 

Most 
Common 
Strategy 

Used 

1 3 1 3 1 1 1 3 1 1 

Note.  0 = Guess or no strategy used; 1 = Direct Modeling strategy; 2 = Counting 
strategy; 3 = Number Facts strategy. 
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APPENDIX O 

COMPLETED STUDENT ANSWER SOLUTION STRATEGY AND STRATEGY 

SUBSET CHART 
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Student’s 
ID # 

Question Number 
1 2 3 4 5 

Pre Post Pre Post Pre Post Pre Post Pre Post 
1 1-3 2-3 1-5 3-2 2-1 2-3 1-6 3-1 1-5 2-3 
2 1-2 2-3 1-4 2-3 1-4 1-4 1-3 2-2 1-5 1-6 
3 0 1-2 0 3-2 0 1-4 0 1-6 0 3-2 
4 1-2 1-2 1-1 3-2 3-1 3-2 1-3 3-2 1-5 1-3 
5 1-2 3-2 1-1 3-2 1-3 1-4 1-3 1-6 1-6 1-3 
6 1-2 2-3 3-2 3-1 2-5 1-4 3-2 3-1 1-1 3-2 
7 1-3 3-1 1-4 1-2 1-3 1-3 1-1 1-6 1-6 1-3 
8 1-6 1-3 1-1 2-1 1-4 1-3 1-3 1-3 1-1 1-3 
9 2-3 1-2 1-6 3-2 1-3 1-4 1-3 3-1 1-6 1-5 
10 1-3 1-2 3-2 3-2 3-2 1-4 2-4 1-6 1-6 1-5 
11 1-1 1-3 0 1-2 0 2-5 0 3-2 1-1 1-5 
12 1-2 1-2 1-6 1-2 1-3 3-2 1-3 3-2 3-2 2-5 
13 1-2 3-1 3-2 3-2 3-1 3-2 3-1 3-1 3-2 3-2 
14 1-2 3-1 1-6 3-2 1-3 3-2 1-3 3-2 1-3 1-3 
15 1-2 3-1 1-2 3-2 1-4 3-2 1-1 1-6 1-6 1-5 
16 1-2 2-3 1-2 2-2 1-4 2-4 1-6 2-3 1-5 1-5 
17 1-2 3-2 1-2 3-2 1-3 3-2 1-3 3-2 1-2 3-2 
18 1-1 3-2 1-1 3-2 1-1 1-4 1-3 3-2 1-1 2-4 
19 2-3 3-2 3-2 3-2 1-3 3-2 2-1 3-1 1-6 3-2 

Most 
Common 
Strategy 

Used 

Direct 
Modeling, 
Joining To 

Direct 
Modeling, 
Joining To 

Direct 
Modeling, 
Joining All 

and 
Number 
Facts, 

Recalled 
Facts 

Number 
Facts, 

Recalled 
Fact 

Direct 
Modeling, 
Separating 

From 

Direct 
Modeling, 
Separating 

To and 
Number 

Fact, 
Recalled 

Fact 

Direct 
Modeling, 
Separating 

From 

Number 
Facts, 

Recalled 
Fact 

Direct 
Modeling, 
Trial and 

Error 

Direct 
Modeling, 
Separating 
From and 

Direct 
Modeling, 
Matching 

and Number 
Facts, 

Recalled 
Fact 
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APPENDIX P 

ARIZONA STATE UNIVERSITY INSTITUTIONAL REVIEW BOARD APPROVAL 

FORM 
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APPENDIX Q 

CHANDLER UNIFIED SCHOOL DISTRICT INSTITUTIONAL REVIEW BOARD 

APPROVAL FORM 
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